2333333333333333333333cece

假定n<m

∑ i s p r i m e ( p ) ∑ a = 1 n ∑ b = 1 m g c d ( a , b ) = = p \sum_{isprime(p)}\sum_{a=1}^n\sum_{b=1}^mgcd(a,b)==p isprime(p)a=1nb=1mgcd(a,b)==p

∑ i s p r i m e ( p ) ∑ a = 1 ⌊ n p ⌋ ∑ b = 1 ⌊ m p ⌋ g c d ( a , b ) = = 1 \sum_{isprime(p)}\sum_{a=1}^{\left \lfloor \frac{n}{p} \right \rfloor}\sum_{b=1}^{\left \lfloor \frac{m}{p} \right \rfloor}gcd(a,b)==1 isprime(p)a=1pnb=1pmgcd(a,b)==1

∑ i s p r i m e ( p ) ∑ a = 1 ⌊ n p ⌋ ∑ b = 1 ⌊ m p ⌋ ∑ d ∣ a & d ∣ b μ ( d ) \sum_{isprime(p)}\sum_{a=1}^{\left \lfloor \frac{n}{p} \right \rfloor}\sum_{b=1}^{\left \lfloor \frac{m}{p} \right \rfloor}\sum_{d|a\&d|b}\mu(d) isprime(p)a=1pnb=1pmda&dbμ(d)

∑ i s p r i m e ( p ) ∑ d = 1 ⌊ n p ⌋ μ ( d ) ⌊ n p d ⌋ ⌊ m p d ⌋ \sum_{isprime(p)}\sum_{d=1}^{\left \lfloor \frac{n}{p} \right \rfloor}\mu(d) {\left \lfloor \frac{n}{pd} \right \rfloor}{\left \lfloor \frac{m}{pd} \right \rfloor} isprime(p)d=1pnμ(d)pdnpdm

但是做到这里我们发现直接枚举质数仍然会出事TAT,继续搞

∑ i s p r i m e ( p ) & p ∣ d ∑ d n μ ( d p ) ⌊ n d ⌋ ⌊ m d ⌋ \sum_{isprime(p)\&p|d}\sum_{d}^{n} \mu \left( \frac{d}{p} \right) {\left \lfloor \frac{n}{d} \right \rfloor}{\left \lfloor \frac{m}{d} \right \rfloor} isprime(p)&pddnμ(pd)dndm

f ( d ) = ∑ i s p r i m e ( p ) & p ∣ d μ ( d p ) f(d)=\sum_{isprime(p)\&p|d}\mu \left( \frac{d}{p} \right) f(d)=isprime(p)&pdμ(pd)

则原式变为

∑ d = 1 n ⌊ n d ⌋ ⌊ m d ⌋ f ( d ) \sum_{d=1}^{n} {\left \lfloor \frac{n}{d} \right \rfloor}{\left \lfloor \frac{m}{d} \right \rfloor}f(d) d=1ndndmf(d)

联系 ( \mu ) 函数的定义,设h为d的质因子个数,g为d质因子指数和可得

f ( d ) = { − μ ( d ) s h = g ( − 1 ) s h + 1 = g 0 O t h e r w i s e f(d)= \begin{cases} -\mu \left (d \right ) s& h=g\\ \left ( -1 \right )^s& h+1=g\\ 0& Otherwise \end{cases} f(d)=μ(d)s(1)s0h=gh+1=gOtherwise

Inline 行内的公式 ( E=mc^2 ) 行内的公式。

c = ± a 2 + b 2 c = \pm\sqrt{a^2 + b^2} c=±a2+b2

x   y x \> y xy

f ( x ) = x 2 f(x) = x^2 f(x)=x2

α = 1 − e 2 \alpha = \sqrt{1-e^2} α=1e2

( 3 x − 1 + ( 1 + x ) 2 ) (\sqrt{3x-1}+(1+x)^2) (3x1 +(1+x)2)

sin ⁡ ( α ) θ = ∑ i = 0 n ( x i + cos ⁡ ( f ) ) \sin(\alpha)^{\theta}=\sum_{i=0}^{n}(x^i + \cos(f)) sin(α)θ=i=0n(xi+cos(f))

− b ± b 2 − 4 a c 2 a \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} 2ab±b24ac

f ( x ) = ∫ − ∞ ∞ f ^ ( ξ )   e 2 π i ξ x   d ξ f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi f(x)=f^(ξ)e2πiξxdξ

1 ( ϕ 5 − ϕ ) e 2 5 π = 1 + e − 2 π 1 + e − 4 π 1 + e − 6 π 1 + e − 8 π 1 + ⋯ \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } (ϕ5 ϕ)e52π1=1+1+1+1+1+e8πe6πe4πe2π

( ∑ _ k = 1 n a _ k b _ k ) 2 ≤ ( ∑ _ k = 1 n a _ k 2 ) ( ∑ _ k = 1 n b _ k 2 ) \displaystyle \left( \sum\_{k=1}^n a\_k b\_k \right)^2 \leq \left( \sum\_{k=1}^n a\_k^2 \right) \left( \sum\_{k=1}^n b\_k^2 \right) (_k=1na_kb_k)2(_k=1na_k2)(_k=1nb_k2)

a 2 a^2 a2

a 2 + 2 a^{2+2} a2+2

a 2 a_2 a2

x 2 3 {x_2}^3 x23

x 2 3 x_2^3 x23

1 0 1 0 8 10^{10^{8}} 10108

a i , j a_{i,j} ai,j

n P k _nP_k nPk

c = ± a 2 + b 2 c = \pm\sqrt{a^2 + b^2} c=±a2+b2

1 2 = 0.5 \frac{1}{2}=0.5 21=0.5

k k − 1 = 0.5 \dfrac{k}{k-1} = 0.5 k1k=0.5

( n k ) ( n k ) \dbinom{n}{k} \binom{n}{k} (kn)(kn)

∮ C x 3   d x + 4 y 2   d y \oint_C x^3\, dx + 4y^2\, dy Cx3dx+4y2dy

⋂ 1 n p ⋃ 1 k p \bigcap_1^n p \bigcup_1^k p 1np1kp

e i π + 1 = 0 e^{i \pi} + 1 = 0 eiπ+1=0

( 1 2 ) \left ( \frac{1}{2} \right ) (21)

x 1 , 2 = − b ± b 2 − 4 a c 2 a x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a} x1,2=2ab±b24ac

x 2 + 2 x − 1 {\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1} x2+2x1

∑ k = 1 N k 2 \textstyle \sum_{k=1}^N k^2 k=1Nk2

1 2 [ 1 − ( 1 2 ) n ] 1 − 1 2 = s n \dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n 12121[1(21)n]=sn

( n k ) \binom{n}{k} (kn)

0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + ⋯ 0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots 0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+

∑ k = 1 N k 2 \sum_{k=1}^N k^2 k=1Nk2

∑ k = 1 N k 2 \textstyle \sum_{k=1}^N k^2 k=1Nk2

∏ i = 1 N x i \prod_{i=1}^N x_i i=1Nxi

∏ i = 1 N x i \textstyle \prod_{i=1}^N x_i i=1Nxi

∐ i = 1 N x i \coprod_{i=1}^N x_i i=1Nxi

∐ i = 1 N x i \textstyle \coprod_{i=1}^N x_i i=1Nxi

∫ 1 3 e 3 / x x 2   d x \int_{1}^{3}\frac{e^3/x}{x^2}\, dx 13x2e3/xdx

∫ C x 3   d x + 4 y 2   d y \int_C x^3\, dx + 4y^2\, dy Cx3dx+4y2dy

1 2  ⁣ Ω 3 4 {}_1^2\!\Omega_3^4 12Ω34

多行公式 Multi line

> ```math or ```latex or ```katex

f ( x ) = ∫ − ∞ ∞ f ^ ( ξ )   e 2 π i ξ x   d ξ f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi f(x)=f^(ξ)e2πiξxdξ

( ∑ _ k = 1 n a _ k b _ k ) 2 ≤ ( ∑ _ k = 1 n a _ k 2 ) ( ∑ _ k = 1 n b _ k 2 ) \displaystyle \left( \sum\_{k=1}^n a\_k b\_k \right)^2 \leq \left( \sum\_{k=1}^n a\_k^2 \right) \left( \sum\_{k=1}^n b\_k^2 \right) (_k=1na_kb_k)2(_k=1na_k2)(_k=1nb_k2)

1 2 [ 1 − ( 1 2 ) n ] 1 − 1 2 = s n \dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] } { 1-\tfrac{1}{2} } = s_n 12121[1(21)n]=sn

1 ( ϕ 5 − ϕ ) e 2 5 π = 1 + e − 2 π 1 + e − 4 π 1 + e − 6 π 1 + e − 8 π 1 + ⋯ \displaystyle \frac{1}{ \Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{ \frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} { 1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } (ϕ5 ϕ)e52π1=1+1+1+1+1+e8πe6πe4πe2π

f ( x ) = ∫ − ∞ ∞ f ^ ( ξ )   e 2 π i ξ x   d ξ f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi f(x)=f^(ξ)e2πiξxdξ

  1. List item
    2323
  2. 2323
    23
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值