UVA11021--Tribles

本文介绍了一个经典的全概率问题——计算特定条件下Tribbles种群在若干代后完全绝种的概率。通过递推算法实现了高效计算,并提供了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Download as PDF

Problem A
Tribbles
Input:
 Standard Input

Output: Standard Output

GRAVITATIONn.
"The tendency of all bodies to approach one another with a strength
proportion to the quantity of matter they contain -- the quantity of
matter they contain being ascertained by the strength of their tendency
to approach one another. This is a lovely and edifying illustration of
how science, having made A the proof of B, makes B the proof of A."

Ambrose Bierce

You have a population of k Tribbles. This particular species of Tribbles live for exactly one day and then die. Just before death, a single Tribble has the probability Pi of giving birth to i more Tribbles. What is the probability that after m generations, everyTribble will be dead?

Input
The first line of input gives the number of cases, NN test cases follow. Each one starts with a line containing n (1<=n<=1000),k (0<=k<=1000) and m (0<=m<=1000). The next n lines will give the probabilities P0P1, ..., Pn-1.

Output
For each test case, output one line containing "Case #x:" followed by the answer, correct up to an absolute or relative error of 10-6.

Sample Input

Sample Output

4
3 1 1
0.33
0.34
0.33
3 1 2
0.33
0.34
0.33
3 1 2
0.5
0.0
0.5
4 2 2
0.5
0.0
0.0
0.5
Case #1: 0.3300000
Case #2: 0.4781370
Case #3: 0.6250000
Case #4: 0.3164062
 
/*此题是很经典的全概率问题。要求m代后绝种的概率。只需分别求出一只毛球在第一代到第m带刚好绝种的概率,相加即可
此题每只毛球最多可能生到1000个孩子,代数上限是1000.求一只到第i代绝种的概率,可以利用一只到i-1代绝种的概率
过程如下:一只成功生下一个孩子的概率*一只i-1代绝种的概率
          一只成功生下二个孩子的概率*(一只i-1代绝种的概率的平方)
		  以此类推即可*/
#include<iostream>
#include<cstdio>
#include<string>
#include<algorithm>
using namespace std;
int main()
{
	long double p[1010],f[1010];
	int i,n,m,j,k,tt;
	long double t,ans,ans1; 
	scanf("%d",&tt);//输入样例数
	for (int u=1;u<=tt;u++)
	{
		scanf("%d%d%d",&n,&k,&m);
		for (i=0;i<n;i++)
			scanf("%lf",&p[i]);//p[i]代表每只毛球生i个孩子的概率
		f[1]=p[0];ans1=f[1];//f[1]=p[0] p[0]表示生0个孩子 f[i]代表一只毛球经过i代死光的概率
		for (i=2;i<=m;i++)
		{
			t=f[i-1];f[i]=0;
			for (j=1;j<n;j++)
			{
				f[i]+=t*p[j];
				t*=f[i-1];
			}
			ans1+=f[i];
		}
		ans=1;
		for (i=1;i<=k;i++)//k是初始的毛球数目
			ans*=ans1;
		printf("Case #%d: %.7lf\n",u,ans);
	}	
}


内容概要:本文详细介绍了QY20B型汽车起重机液压系统的设计过程,涵盖其背景、发展史、主要运动机构及其液压回路设计。文章首先概述了汽车起重机的分类和发展历程,强调了液压技术在现代起重机中的重要性。接着,文章深入分析了QY20B型汽车起重机的五大主要运动机构(支腿、回转、伸缩、变幅、起升)的工作原理及相应的液压回路设计。每个回路的设计均考虑了性能要求、功能实现及工作原理,确保系统稳定可靠。此外,文章还详细计算了支腿油缸的受力、液压元件的选择及液压系统的性能验算,确保设计的可行性和安全性。 适合人群:从事工程机械设计、液压系统设计及相关领域的工程师和技术人员,以及对起重机技术感兴趣的高等院校学生和研究人员。 使用场景及目标:①为从事汽车起重机液压系统设计的工程师提供详细的参考案例;②帮助技术人员理解和掌握液压系统设计的关键技术和计算方法;③为高等院校学生提供学习和研究起重机液压系统设计的实用资料。 其他说明:本文不仅提供了详细的液压系统设计过程,还结合了实际工程应用,确保设计的实用性和可靠性。文中引用了大量参考文献,确保设计依据的科学性和权威性。阅读本文有助于读者深入了解汽车起重机液压系统的设计原理和实现方法,为实际工程应用提供有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值