OKR概述 OKR很难吗?用一张图告诉你OKR的定义、操作方法、谷歌实操步骤等,让你快速对OKR有一个全面了解。什么是OKR中文是目标与关键结果法,是Object ives and Key Results的英文缩写。 定义:这是一种由公司、团队和个人协同制定目标的方法,由英特尔公司创始人安迪·葛洛夫(AndyGrove)发明,并由约翰·道尔(JohnDoerr)引入谷歌并发扬光大。O表示一个目标,即你想达到什么。KR表示多个可量化的关键结果,即你想怎么做。 起源:来自德鲁克的目标管理和自我控制,他发现人
如何保证数据产出质量简述 如何保证数据产出质量简述数据质量的评估数据质量的保障数据产出流程&机制revire机制数据质量保障中的工具&规则SQLSCANDQC基线数据质量的评估数据质量可以从一下几个角度进行评估:完整性:完整性是指数据的记录和信息是否完整,是否存在数据缺失情况。数据缺失主要包括记录的缺失和具体某个字段信息的缺失,两者都会造成统计结果不准确。准确性准确性是指数据中记录的信息和数据是否准确、是否存在异常或者错误的信息。例如,成绩单中分数出现负数或订单中出现错误的买家信息等,这些数据都
数据库数据采集 常见的三种采集方案 直连同步 通过API和动态链接同步数据库数据,会对源数据库产生较大影响。不建议直接同步主数据库 数据文件同步 同步源系统生成的文本文件。 文本文件一般由单独的服务器存储 为了保证数据质量,处理源数据,还需要校验文件 数据库日志解析同步(一般采用此种方式) 通过同步、解析数据库日志文件系统进行数据同步。可以实现毫秒级延迟且...
Flume Memory Channel调优 Flume Memory Channel调优原文地址读后感原文版本一版本二版本三版本四版本五原文地址原文地址读后感通过加大batch size和transaction size来提高source到channel和channel到sink的吞吐量通过加大capactiy来提高channel的容量,防止频繁填充率过高阻塞通过增加多个channel来减小每个channel的填充量,减小flume节点宕机引起的数据丢失此外,还可以修改flume-env.sh中的Xms和Xmx来增加flume的JVM
Redis哨兵模式(转载) Redis哨兵模式概述原文地址概述Sentinel(哨兵)是用于监控redis集群中Master状态的工具,是Redis 的高可用性解决方案,sentinel哨兵模式已经被集成在redis2.4之后的版本中。sentinel是redis高可用的解决方案,sentinel系统可以监视一个或者多个redis master服务,以及这些master服务的所有从服务;当某个master服务下线时,自动将该master下的某个从服务升级为master服务替代已下线的master服务继续处理请求。sentinel
Redis 主从架构 Redis主从架构读后感摘要原文地址读后感摘要Redis集群采取主从架构,采取读写分离的设计方案Master负责写slaves负责读Redis集群可以有多个主从,一个服务器可以同时兼任主从两种角色。即本身作为某个主从的从,同时作为另一个主从的主。如下图:Redis主从同步方式有两种:增量同步快照同步原文地址原文地址...
Redis发布订阅概念 发布订阅发布订阅哨兵模式发布订阅Redis 发布订阅 (pub/sub) 是一种消息通信模式:发送者 (pub) 发送消息,订阅者 (sub) 接收消息。Redis 客户端可以订阅任意数量的频道。下图展示了频道 channel1 , 以及订阅这个频道的三个客户端 —— client2 、 client5 和 client1 之间的关系:当有新消息通过 PUBLISH 命令发送给频道 channel1 时, 这个消息就会被发送给订阅它的三个客户端:哨兵模式...
Redis缓存穿透,缓存击穿,缓存雪崩 缓存穿透,缓存击穿,缓存雪崩缓存穿透解决方案缓存雪崩解决方案缓存击穿解决方案原文引用缓存穿透缓存穿透的概念很简单,用户想要查询一个数据,发现redis内存数据库没有,也就是缓存没有命中,于是向持久层数据库查询。发现也没有,于是本次查询失败。当用户很多的时候,缓存都没有命中,于是都去请求了持久层数据库。这会给持久层数据库造成很大的压力,这时候就相当于出现了缓存穿透。在流量大时,可能DB就挂掉了,要是有人利用不存在的key频繁攻击我们的应用,这就是漏洞。这里需要注意和缓存击穿的区别,缓存击穿,是指一个
Redis-2 redis持久化简述 redis持久化基本概念持久化方案RDB持久化方案RDB持久化配置RDB触发条件AOF持久化方案AOF写数据三种策略AOF重写AOF实时写入流程AOF重写流程AOF功能开启AOF相关配置RDB和AOF对比从持久化中恢复数据基本概念由于Redis是一个内存数据库,所有数据都是存在内存中,容易丢失,因此需要进行定期的持久化来防止数据丢失,确保数据的安全性。所谓持久化,简单来讲,就是将数据以某种形式持久化到磁盘上。持久化方案Redis支持两种持久化方案:RDB持久化方案AOF持久化方案RDB和
Redis-1 redis基本概念、基本数据类型、基本操作命令 redis基本概念redis 概念及使用场景redis基本数据类型Redis数据结构的底层实现redis基本操作命令String类型Redis中对可以的操作redis当中对list列表的操作Redis操作set集合Redis 中的HyperLogLogredis 概念及使用场景Redis是基于C编写的key-value存储系统,是一种NOSQL系统。Redis特点:高效性:Redis可以实现每秒百万级别次数的读取和十万级别次数的写入。原子性:Redis所有操作都是原子性的,并支持对几个操作合并后
机器学习基本概念 机器学习基本概念样本分类数据集机器学习分类监督学习非监督学习函数机器学习基本流程最优化问题求解机器学习的挑战基本概念简单来说,机器学习就是让计算机具有基于数据 的学习能力。通过学习,能对从未进过的数据进行有效的预测。样本分类有标签的样本:记录的集合, ????={????1,????2,…,????????} ;无标签的样本:样例的集合, ????={(????1,????1),(????2,????2),…,(????????,????????)} 。数据集训练样本可以根据用途分为训
Jedis使用教程完整版(转载) Jedis使用教程完整版读后感概述基本使用连接池使用高可用连接客户端分片小结读后感简介Jedis是Redis官方推荐的Java链接工具资源的创建通过Jedis自带的线程池创建资源Jedis一般使用JedisPool线程池链接Redis为了实现高可用,通过使用JedisSentinelPool来链接Redis创建完之后通过pool.getResource来获得资源资源的回收使用完后,需要通过jedis.close();和pool.close();将资源还给连接池Jedi
flink on yarn工作提交流程及三层图概述 flink on yarn工作提交流程示意图flink三层图概述示意图流程如下:Client向Dispatch而发起请求,Dispatch而向yarn提交jobYarn的NN创建一个container,启动Application Master(AM)ApplicationMaster在本地启动一个Resource Manager和Job ManagerJob manager根据StreamGraph生成的ExecutionGraphy以及物理执行计划向Flink Resource Ma
flink SQL浅析 flink SQL解析Flink table/SQL架构演变flink SQL的工作机制SQL实现详述:Flink table/SQL架构演变Flink1.9之前,批处理和流处理有以下几点不同各自独立的API(流处理DataStream,批处理DataSet)各自不同的执行计划解析过程各自不同的错的跟过程因此,没有批流一体的概念,面向用户不友好。如下图所示:Flink1.9引入了blink planner将批SQL处理作为流SQL处理的特例。Flink Planner用来兼容
基于 Flink + Kafka 的实时数仓在网易云音乐的建设实践(转载) 基于 Flink + Kafka 的实时数仓在网易云音乐的建设实践原文背景背景介绍流平台通用框架为什么选 Kafka?为什么选择 Flink?Kafka + Flink 流计算体系网易云音乐使用 Kafka 的现状Flink+Kafka 平台化设计Kafka 在实时数仓中的应用在解决问题中发展Flink + Kafka 在 Lambda 架构下的运用问题&改进多 Sink 下 Kafka Source 重复消费问题同交换机流量激增消费计算延迟问题Q & A原文简介:本文由网易云音乐实时计
HBase的一致性 HBase的一致性首先来理解下一致性HBase是强一致性系统Hbase是一个强一致性数据库,不是“最终一致性”数据库,官网给出的介绍:“Strongly consistent reads/writes: HBase is not an “eventually consistent” DataStore. This makes it very suitable for tasks such as high-speed counter aggregation.”这里要先提一下分布式系统的CAP原理:
强一致性、弱一致性、顺序一致性、最终一致性概述 通俗易懂 强一致性、弱一致性、最终一致性、读写一致性、单调读、因果一致性 的区别与联系什么是一致性一致性的种类导致一致性出现的原因强一致性 与 弱一致性强一致性两个要求弱一致性强一致性和弱一致性举例顺序一致性最终一致性最终一致性的种类什么是一致性在分布式系统中,一致性(Consistency)是指多副本(Replications)问题中的数据一致性。一致性的种类事务一致性数据一致性本文主要讨论数据一致性(事务一致性指ACID)导致一致性出现的原因数据的分布式存储是导致出现一致性的唯一原