学习斯坦福机器学习笔记—第五课

课程概要:1.生成学习算法(Generative learning algorithm)2.高斯判别分析(GDA,Gaussian Discriminant Analysis) 3.GDA与logistic模型的联系4.朴素贝叶斯(Naive Bayes) 5.拉普拉斯平滑(Laplace smo...

2018-05-18 09:57:25

阅读数:33

评论数:0

学习斯坦福机器学习—第四课

1、最速下降法和牛顿法1.1 最速下降法计算步骤如下:(1)给定初始点x(1)∈R(n)x(1)∈R(n),允许误差ϵϵ>0,置k=1k=1;(2)计算搜索方向d(k)=−▽f(x(k))d(k)=−▽f(x(k));(3)若||d(k)||≤ϵ||d(k)||≤ϵ,则停止计...

2018-05-17 18:06:00

阅读数:33

评论数:0

机器学习算法之:指数族分布与广义线性模型

参考NG的lecture note1 part3 本文将首先简单介绍指数族分布,然后介绍一下广义线性模型(generalized linear model, GLM), 最后解释了为什么逻辑回归(logistic regression, LR) 是广义线性模型的一种。指数族分布指数族分布 (The...

2018-05-17 18:04:24

阅读数:34

评论数:0

机器学习第五章——Logistic回归算法

1:简单概念描述假设现在有一些数据点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称为回归。训练分类器就是为了寻找最佳拟合参数,使用的是最优化算法。这就是简单的线性回归问题,可以通过最小二乘法求解其参数,最小二乘法和最大似然估计见:http://blog.csdn.net...

2018-05-17 16:03:39

阅读数:33

评论数:0

学习斯坦福机器学习笔记—第三课

Logistic Regression上一次的课程主要解决回归分析问题,这一次的课程主要为分类问题,分类问题也可看做将回归问题的连续性离散化。1.1 Classification先来谈谈二分类问题。课程中先给出了几个例子。 邮件是垃圾邮件还是非垃圾邮件;网上交易是的欺骗性(Y or N);肿瘤是恶...

2018-05-17 09:08:12

阅读数:79

评论数:0

学习斯坦福机器学习笔记—第二讲

本讲内容:1.linear regression(线性回归)2.gradient descent(梯度下降)3.normal equations(正规方程组) 首先引入一些符号:(1)  训练样本的数量(2)   输入变量/ 输入特征(3)   输出变量/ 目标变量(4)  第i个训练样本(5) ...

2018-05-16 16:54:07

阅读数:28

评论数:0

学习斯坦福机器学习笔记—第一课

1.无监督、半监督和监督学习区别以及例子:1.1 无监督学习:无监督式学习(Unsupervised Learning )是人工智能网络的一种算法(algorithm),其目的是去对原始资料进行分类,以便了解资料内部结构。有别于监督式学习网络,无监督式学习网络在学习时并不知道其分类结果是否正确,亦...

2018-05-16 09:40:09

阅读数:75

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭