那些职场高手,都是怎么解决问题的?

高手的职场问题解决之道
本文分享了职场中遇到问题时,高手是如何运用5Why分析法挖掘问题本质,形成解决问题的思维套路。通过案例解析,阐述了普通员工与高手在面对问题时的思考差异,强调了深度思考和知识体系构建的重要性。

职场总会遇见很多新问题,高手会从容应对,形成了一套体系,可以处理工作当中的大部分内容,剩下的一部分能够用快速提问的方式找到思路。

记得几年前有个同事A,下午四点多项目突然丢过来一个活,要在下班前出一套图,同事A觉得很委屈,这都马上下班了,他下班有了别的安排,而手头还有个紧急项目要图,于是他便没有去做,下班没打招呼就走了。

当晚上吃饭回来,项目这边没有收到图,而一看同事A也下班了,电话也没打通。

第二天早上来,领导便把A叫到会议室,问他怎么没有作图。A的回复是,手里有个更紧急的项目要做,晚上要去接外地的亲戚,所以就忙忘了,没有给作图。说着A觉得委屈,认为部门有人没事,活却没给到他,说着还差点掉泪。

领导打断了A,说有没有想过为什么会发给你了?项目那边直接丢给你,以为你可以按时完成,而你因为手头有别的事,却没有沟通协调,导致了项目那边没有按计划交付。我今天找你来不是问责的,而是想借着这个事情,来跟你说下这类问题的解决方案。

多问为什么?这里可以按照 5Why 来操作。

所谓5why分析法,又称“5问法”,也就是对一个问题点连续以5个“为什么”来自问,以追究其根本原因。虽为5个为什么,但使用时不限定只做“5次为什么的探讨”,主要是必须找到根本原因为止,有时可能只要3次,有时也许要10次,如古话所言:打破砂锅问到底。

5why法的关键所在:鼓励解决问题的人要努力避开主观或自负的假设和逻辑陷阱,从结果着手,沿着因果关系链条,顺藤摸瓜,直至找出原有问题的根本原因。

这里不是说必须要问5次,只是按照自己的需求,问到合适位置就可以了。

1 为什么没有按期完成作图?

答案:因为忙其他项目了。

2 为什么会有其他项目?

答案:上周领导交给的活,今天要给。

3 为什么上周交的活,要拖到最后?

答案:觉得时间充足,没有提前处理。

于是,从这个角度,找到了一个原因,就是A需要学会做任务安排表,不要让非紧急重要的事情,在截止时间到来时候,变成了紧急重要任务。但这个问题没有结束的,还能找到另一个问题。以项目角度再问一次:

1 为什么没有按期完成作图?

答案:因为给了A,而没有问A的时间。

2 为什么没有问A?

答案:看到消息已阅就没再去沟通。

3 为什么不去确认下?

答案:想着A有疑问就会提出来的。

于是,项目沟通上有问题的,这也是问题耽搁的原因,如果项目能够在紧急任务上,能够再去确认一下,就能发现A有别的事在忙,同时另一个作图的同事有时间,就可进行调度,按照要求完成任务。

从这件小事上,我们发现了几个问题,

1 A忙的忘记了这个事情

2 项目那边没有二次确认进度

于是给A的建议就是,做时间安排,至少要做到每天的任务安排表格,如果有新的任务,要及时调整,安排。对于项目的建议就是,交代任务的时候,最好确认,同时如果不清楚员工的状态,最好把任务说给他的直属领导,让领导来安排人,这样子多一个人,同时还能找到最高效的处理方式,安排合适的人去做。

同时记得确认,不要想当然。

关于想当然,这个事情我们在职场经常会发生。像找一个前辈问问题,最后发现人家下班直接走了,第二天你一问,他忘记了。你说怪人家吗?不见得。有时候确实很忙,你的事情在你这边天大一般,但有可能前辈忙着忘掉了,也没把这个事放在心上。你以为他下班会找你,可等来的是人家下班了。其实这个就是我们想当然,我们要做确认,有时候前辈不是不帮忙,而是确实一忙,忘了你的事情了。

在上面的 5Why 方法,可以找到一些问题点,从而帮助我们解决根本性的问题,而不是停留在表面。而这个 5Why 方法,在技术人员这里,是应该大力发挥作用的。

比如我们举一个简单的例子:

1 为什么应用ANR了?

答案:因为消息太多了,没有处理过来。(很多人就停留在这里,直接把消息数降下来解决问题。最常见的是,空指针的解决方式,直接加一个判空。。。我相信一大半人都这么干过)

2 为什么消息太多?

答案:因为每个处理起来都是个耗时方法。

3 为什么会耗时?

答案:因为跨进程了,频繁读取联系人数据。

问到这里,发现一个问题,消息太多不是根本原因,原因是在读取联系人数据,那么能否设置缓存来保存下数据,后续直接用数据就可以了。如果数据要更新,设置一个定时器刷新下,从而保证消息不堵塞。这才是解决了问题。

我们解决问题,很容易被表象迷惑,从而解决了一个问题,看似解决了,实际上没有抓到本质。这也是普通人和高手之间的区别。

高手擅长挖掘本质,你看到的是消息太多,他看到的是跨进程同步,解决思路不一样。你解决的是一个具体的这个问题,而高手解决的是一类问题,他知道原因不在消息太多。我之前总结了下高手比普通人优秀,其实就做多了几件事:

1 多问Why,直到找到更深层的原因

2 擅于总结,形成一套思维套路

像ANR,高手就会总结都会有的情况,然后你一说你的问题,他就可以通过对你提问,形成初步答案。比如问你是否在主线程操作数据库,是否点击后有大量计算过程,多线程任务,然后再要下你的堆栈信息,很快给出一个答案,又准确,又高效。

这个专业术语叫做,底层逻辑。简单来说就是高手知道里面的运行机制,并且可以在大脑中推演程序的流程,从而找到可疑的地方,结合数据,信息,最终给出判断。之前同事找我解决问题,发现我一直在追问,觉得问的很烦,最后我给出解决方案,他才发现原来可以通过不断提问,排除一些路径,最终把问题的原因聚焦在几点。

然后从代码上找具体是命中了哪条,解决问题。如果发现最终跟猜测的都不一样,高手会做的事情是,把这个经验汇集起来,补充到自己的知识体系当中。

你怎么确认这个人是否是高手呢?就看他被问住后,怎么对待问题的。高手如果发觉他的分析出现漏洞,就算他没有时间跟踪处理,他也会再你解决之后,问清楚具体原因。好学是高手和普通人的区别,并且高手不会怕被难住,因为他知道难住他才是成长的契机。

而普通人是解决一个问题,就是解决一个问题,不去思考是否还有深层原因,是否可以汇总知识。因为没有训练深度思考能力,再加上学习力不足,普通人被高手甩开,便是必然的结局。

而如果想要变成高手呢?主要就是做两件事:看,想。多看,多接触问题,多思考,思考问题的本质。看高手怎么解决问题的,解决思路,而不是抄答案。就像市面上很多成功人士分享的经验,你当成故事去听,总认为是别人的故事,却没去思考,有哪些你能借鉴,如果是你,当时他的处境你会怎么解决?

高手也是点滴积累而来的,而普通人因为不具备深度思考的能力,于是错过了成为高手的机会。而高手并非触不可及的,而是完全有迹可循。如果你想成为高手,记住思考问题的时候,要多问为什么,把这个变成习惯,在解决问题的时候,多想下这是通用方案吗,是否总结了一个套路,来应对这一类问题。

就像我们知道乘法口诀表,面对多大的数都可以解决。但快速心算,却只是一些特例解决技巧。于是,我是不会去学什么心算技巧,乖乖的掌握到乘法口诀表。像解决 ANR 问题一样,从开始的不知所措,胡乱解决,到最后完全形成了一套体系,只要是 ANR,都可以通过这个模型去解决,这才是普通人和高手的差距。

高手训练通解,抽象模型,而普通人却靠死记硬背。若要跟高手一样的解决方法,把解决的每一个问题,多去归纳,以及深入挖掘。当你如此训练,一般经历三五年,你会发觉,你的思路非常清晰,并且有了所谓的迁移能力。

面对新的知识,能够通过和熟知的技术类比,找到共性,差异,快速吸收。后面单独讲下,如何有意识的形成知识体系,变成一套解决问题的模型。

--完--

如果你在职场中遇到类似问题,不知道该怎么解决,或者不知道该怎么学习,突围,欢迎加入明哥的星球,进行一对一辅导。

推荐阅读:(分享一波)

工作中遇到挫折是常态,怎么化解才是关键

换了一个又一个,还是找不到愿意奋斗和成长的工作?

为了逃避工作而选择考研,还在质疑努力存在的意义?

记得把公号加星标,会第一时间收到通知。

原创不易,如果觉得有点用,希望可以随手转发或者”在看“,拜谢。

内容概要:本文围绕“MATLAB基于Copula理论的多风电场风电预测误差时空相关性建模研究”展开,重点利用Copula理论对多个风电场的预测误差进行时空相关性建模,旨在提高风电功率预测的准确性与可靠性。通过MATLAB实现建模过程,充分考虑风电预测误差在时间和空间维度上的统计特性与依赖结构,构建能够刻画复杂非线性相关关系的概率模型。该方法有助于提升高比例可再生能源接入背景下电力系统调度、风险评估与稳定性分析的能力,尤其适用于多风电场协同运行与预测误差不确定性管理场景。文中可能涉及边缘分布拟合、Copula函数选型、参数估计与模型验证等关键技术环节。; 适合人群:具备一定概率统计与电力系统背景知识,熟悉MATLAB编程,从事新能源预测、电力系统规划或风险管理等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于多风MATLAB基于Copula理论的多风电场风电预测误差时空相关性建模研究电场联合预测误差建模,提升区域风电出力预测精度;②支撑电力系统风险评估、储能配置与调度决策,增强电网对风电波动性的适应能力;③复现高水平期刊(如SCI)研究成果,推动学术研究与实际应用结合。; 阅读建议:建议读者结合文中提供的MATLAB代码深入理解Copula建模流程,重点关注边缘分布选择与Copula函数比较,同时可扩展至光伏等其他可再生能源的时空相关性建模研究。
内容概要:本文介绍了一种基于变分模态分解(VMD)与麻雀搜索算法(SSA)优化的最小二乘支持向量机(LSSVM)相结合的多变量电力负荷预测模型,该模型通过Matlab代码实现。首先利用VMD对原始负荷序列进行分解,降低非平稳性;再通过SSA优化LSSVM的关键参数,提高预测精度;最后将处理后的各模态分量重构得到最终预测结果。该方法有效提升了负荷预测的准确性与稳定性,适用于多变量输入场景下的短期负荷预测任务。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事能源预测相关工作的工程技术人员;尤其适合正在开展智能优化算法与机器学习在电力负荷预测方向研究的学者。; 使用场景及目标:①用于提升电力系统中短期负荷预测精度,支持电网调度与运行决策【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现);②为研究VMD、SSA、LSSVM等先进算法在时间序列预测中的融合应用提供可复现的技术方案与代码参考;③作为SCI论文复现或科研项目开发的基础模型框架。; 阅读建议:建议读者结合文中涉及的信号分解、智能优化与机器学习理论,逐步调试Matlab代码,理解每一步的数据处理与参数优化逻辑,并尝试在不同数据集上验证模型性能,进一步拓展至风电、光伏等可再生能源出力预测领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机毕业设计(源码都能跑起来)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值