kafka企业级消息系统
1、了解为什么要使用消息系统
在没有使用消息系统以前,我们传统对于多业务、夸服务消息传递的时候,会采用串行方式或者并行方法;
-
串行方式:
用户注册实例:将注册信息写入数据库成功后,发送注册邮件,在发送注册短信。
-
并行方式:
将注册信息写入数据库成功后,发送注册邮件的同事,发送注册短信。以上三个任务完成之后,发挥给客户端,与串行的差别是并行的方式可以提提交处理的时间。
消息系统:
-
消息系统负责将数据从一个应用程序传送到另一个应用程序,因此应用程序可以专注于数据,但是不必担心如何共享它。分布式消息产地基于可靠的消息队列的概念。消息在客户端应用程序和消息传递系统之间的异步排队。
-
有两种类型的消息模式可用-点对点;发布-订阅消息系统
-
点对点消息系统中,消息被保留在队列中,一个或者多个消费者可以消耗队列中的消息,但是特定的消息只能有最多的一个消费者消费。一旦丽霞飞着读取队列中的消息,他就从该队列中消失。该系统的典型梳理就是订单处理系统,其中每个订单将有一个订单处理器处理,但多个订单处理器可以同时工作。
-
-
大多数的消息系统是基于发布-订阅消息系统
1.1、消息中间件|消息系统
是从一个系统将数据传递给另一个系统;如果单纯只是传递数据的方式有很多:http、rpc、webservice、定时任务。
2、了解消息系统的分类
2.1、点对点
主要采用的队列的方式,如A->B 当B消费的队列中的数据,那么队列的数据就会被删除掉【如果B椅子不消费那么久会存在队列中有很多的脏数据】
2.2、发布-订阅
必须要有主题的概念;主题:一个消息的分类
发布者将消息财通推方式给消息系统;订阅者可以采用拉、推的方式从消息系统中拿数据
3、消息系统的应用场景
3.1、应用解耦
将一个大型的任务系统分成若干个小模块,将所有的消息进行统一的管理和存储,因此为了解耦,就会涉及到kafka企业级消息平台
3.2、流量控制
秒杀活动当中,一般会因为流量过大,应用服务器挂掉,为了解决这个问题,一般需要在应用前端假如消息队列。
-
可以控制活动的人数
-
可以缓解短时间内流量大使服务崩掉。
3.3、日志处理
-
日志处理指将消息队列用在日志处理中,比如kafka的应用中,解决大量的日志传输问题;日志采集工具采集数据写入kafka中;kafka消息队列负责日志数据的接收,存储,转发功能;日志处理应用程序:订阅并消费kafka队列中的数据,进行数据分析。
3.4、消息通讯
-
消息队列一般都内置了高校的通信机制,因此也可以用在纯的消息通讯,比如点对点的消息队列,或者聊天室等。
4、kafka简介
4.1、简介
kafka是最初由linkedin公司开发的,使用scala语言编写,kafka是一个分布式,分区的,多副本的,多订阅者的日志系统(分布式MQ系统),可以用于搜索日志,监控日志,访问日志等。
4.2、支持的语言
kafka目前支持多种客户端的语言:java、python、c++、php等
4.3、apache kafka是一个分布式发布-订阅消息系统
apache kafka是一个分布式发布-订阅消息系统和一个强大的队列,可以处理大量的数据,并使能够将消息从一个端点传递到另一个端点,kafka适合离线和在线消息消费。kafka消息保留在磁盘上,并在集群内复制以防止数据丢失。kafka构建在zookeeper同步服务之上。它与apache和spark非常好的继承,应用 于实时流式数据分析。
4.4、其他的消息队列
RabbitMQ
Redis
ZeroMQ
ActiveMQ
4.5、kafka的好处
可靠性:分布式的,分区,复制和容错的。
可扩展性:kafka消息传递系统轻松缩放,无需停机。
耐用性:kafka使用分布式提交日志,这意味着消息会尽可能快速的保存在磁盘上,因此它是持久的。
性能:kafka对于发布和定于消息都具有高吞吐量。及时存储了许多TB的消息,他也爆出稳定的新能。
kafka非常快:保证零停机和零数据丢失。
5、kafka应用场景
5.1、指标分析
kafka 通常用于操作监控数据。这设计聚合来自分布式应用程序的统计信息, 以产生操作的数据集中反馈
5.2、日志聚合解决方法
kafka可用于跨组织从多个服务器手机日志,并使他们以标准的合适提供给多个服务器。
5.3、流式处理
流式处理框架(spark,storm,flink)重主题中读取数据,对齐进行处理,并将处理后的数据写入新的主题,供用户和应用程序使用,kafka的强耐久性在流处理的上下文中也非常的有用。
6、kafka架构
6.1、kafka的架构图
6.1.1、官方文档架构图:
6.1.1.1、kafka四大核心
6.1.1.1.1、生产者API
允许应用程序发布记录流至一个或者多个kafka的主题(topics)。
6.1.1.1.2、消费者API
允许应用程序订阅一个或者多个主题,并处理这些主题接收到的记录流。
6.1.1.1.3、StreamsAPI
允许应用程序充当流处理器(stream processor),从一个或者多个主题获取输入流,并生产一个输出流到一个或者多个主题,能够有效的变化输入流为输出流。
6.1.1.1.4、ConnectorAPI
允许构建和运行可重用的生产者或者消费者,能够把kafka主题连接到现有的应用程序或数据系统。例如:一个连接到关系数据库的连接器可能会获取每个表的变化。
6.1.2、架构关系图:
说明:kafka支持消息持久化,消费端为拉模型来拉取数据,消费状态和订阅关系有客户端负责维护,消息消费完后,不会立即删除,会保留历史消息。因此支持多订阅时,消息只会存储一份就可以了。
6.1.3、kafka整体架构图
6.1.4、kafka架构说明
一个典型的kafka集群中包含若干个Producer,若干个Broker,若干个Consumer,以及一个zookeeper集群;kafka通过zookeeper管理集群配置,选举leader,以及在Consumer Group发生变化时进行Rebalance(负载均衡);Producer使用push模式将消息发布到Broker;Consumer使用pull模式从Broker中订阅并消费消息。
7、kafka术语
7.1、kafka中术语介绍
Broker:kafka集群中包含一个或者多个服务实例,这种服务实例被称为Broker
Topic:每条发布到kafka集群的消息都有一个类别,这个类别就叫做Topic
Partition:Partition是一个物理上的概念,每个Topic包含一个或者多个PatITion
Producer:负责发布消息到kafka的Broker中。
Consumer:消息消费者,向kafka的broker中读取消息的客户端
Consumer Group:每一个Consumer属于一个特定的Consumer Group(可以为每个Consumer指定 groupName)
7.2、kafka中topic说明
-
kafka将消息以topic为单位进行归类
-
topic特指kafka处理的消息源(feeds of messages)的不同分类。
-
topic是一种分类或者发布的一些列记录的名义上的名字。kafka主题始终是支持多用户订阅的;也就是说,一个主题可以有零个,一个或者多个消费者订阅写入的数据。
-
在kafka集群中,可以有无数的主题。
-
生产者和消费者消费数据一般以主题为单位。更细粒度可以到分区级别。
7.3、kafka中分区数(Partitions)
-
Partitions:分区数
Partitions:分区数:控制topic将分片成多少个log,可以显示指定,如果不指定则会使用broker(server.properties)中的num.partitions配置的数量。
-
一个broker服务下,是否可以创建多个分区?
-
可以的,broker数与分区数没有关系;
-
-
在kafka中,每一个分区会有一个编号:编号从0开始
-
某一个分区的数据是有序的
-
说明-数据是有序
如何保证一个主题下的数据是有序的?(生产是什么样的顺序,那么消费的时候也是什么样的顺序)
一个主题(topic)下面有一个分区()即
-
topic的Partition数量在创建topic时配置。
-
Partition数量决定了每个Consumer group中并发消费者的最大数量。
-
Consumer group A 有两个消费者来读取4个partition中数据;Consumer group B有四个消费者来读取4个partition中的数据
7.4、kafka中副本数( Partition Replication)
-
kafka分区副本数(kafka Partition Replicas)
-
副本数(replication-factor)
副本数(replication-factor):控制消息保存在几个broker(服务器)上,一般情况下等于broker的个数。
-
一个broker服务下,是否可以创建多个副本因子?
-
不可以;创建主题时,副本因子应该小于等于可用的broker数。
-
-
副本因子过程图
-
副本因子操作以分区为单位的。每个分区都有各自的主副本和从副本;主副本叫做leader,从副本叫做follower(在有多个副本的情况下,kafka会为同一个分区下的分区,设定角色关系:一个leader和N个follower),处于同步状态的副本叫做in-sync-replicas(ISR);follower通过拉的方式从leader同步数据。消费者和生产者都是从leader读写数据,不与follower交互。
-
副本因子的作用:让kafka读取数据和写入数据时的可靠性。
-
副本因子是包含本身|同一个副本因子不能放在同一个Broker中。
-
如果某一个分区有三个副本因子,就算其中一个挂掉,那么只会剩下的两个钟,选择一个leader,但不会在其他的broker中,另启动一个副本(因为在另一台启动的话,存在数据传递,只要在机器之间有数据传递,就会长时间占用网络IO,kafka是一个高吞吐量的消息系统,这个情况不允许发生)所以不会在零个broker中启动。
-
如果所有的副本都挂了,生产者如果生产数据到指定分区的话,将写入不成功。
-
lsr表示:当前可用的副本。
7.5、kafka Partition offset
任何发布到此partition的消息都会被直接追加到log文件的尾部,每条消息在文件中的位置称为offset(偏移量),offset是一个long类型数字,它唯一标识了一条消息,消费者通过(offset,partition,topic)跟踪记录。
7.6、kafka分区和消费组之间的关系
消费组:
由一个或者多个消费者组成,同一个组中的消费者对于同一条消息只消费一次。
某一个主题下的分区数,对于消费组来说,应该小于等于该主题下的分区数。如下所示:
如:某一个主题有4个分区,那么消费组中的消费者应该小于4,而且最好与分区数成整数倍
1 2 4
同一个分区下的数据,在同一时刻,不能同一个消费组的不同消费者消费
8、kafka集群的搭建
8.1、准备三台机器
192.168.140.128 hadoop-01
192.168.140.129 hadoop-02
192.168.140.130 hadoop-03
8.2、初始化环境
8.2.1、安装jdk、安装zookeeper
略。。。
8.2.2、安装目录规划
安装包存放的目录:/export/software
安装程序存放的目录:/export/servers
数据目录:/export/data
日志目录:/export/logs
mkdir -p /export/servers
mkdir -p /export/software
mkdir -p /export/data
mkdir -p /export/logs
8.2.3、安装用户
如果默认用户安装,即可跳过该步骤
安装hadoop,会创建一个hadoop用户
安装kafka,创建一个kafka用户
或者 创建bigdata用户,用来安装所有的大数据软件。
本例:使用root用户
8.2.4、验证环境
1、校验java环境
java -verson
C:\Users\Deborah>java -version
java version "1.8.0_65"
Java(TM) SE Runtime Environment (build 1.8.0_65-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.65-b01, mixed mode)
2、检验zk环境
zkServer.sh status
[root@hadoop-01 ~]# zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /export/servers/zookeeper-3.4.9/bin/../conf/zoo.cfg
Mode:follower
3、防火墙关闭
[root@hadoop-01 ~]# service iptables status
iptables: Firewall is not running.
[root@hadoop-01 ~]#
8.3、kafka集群安装
8.3.1、下载地址
https://archive.apache.org/dist/kafka/1.0.0/ka