常见算法及问题场景——图

本文介绍了图算法在现实场景中的应用,如最短路径、社区发现、网络评价、K-Core、二分图匹配、最小费用最大流、最大连通子图、欧拉回路、哈密顿回路、最小生成树和拓扑排序。具体涉及到Dijkstra、Floyd算法、社区发现的算法评价体系、网络特征、K-Core的KOL理论、二分图匹配的匈牙利算法和最大流问题的解决方法。
摘要由CSDN通过智能技术生成

最短路径

现实场景

1、一批货从北京到广州的的最快,或最省钱的走法。
把路线中各城市当作图的顶点,各城市之间的花费时间,或金钱当作边的权重,求两点之间的最短路径。
2、在城市群中建一个仓储基地,建在什么位置可以让各个城市的送货速度都比较快。
同1,把各城市间的送货速度当作边的权重,求仓储基地到各城市间的最短路径。

算法

1、Dijkstra,单源最短路径。
2、Floyd,两点最短路径。
参考链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html

社区发现

现实场景

用于社交网络中的社区(或话题)发现,基本特点是,社区之间联系稀疏,社区内部联系紧密。如,给定新浪微博的用户关系数据,找出其中的的社区,以及核心节点。

算法

标签传播、主要特征向量、多层模块度、随机游走、边介数等几个系列算法。

各算法的优劣,有一个评价体系,即计算其 Modularity Measure(模块化度量值)。
具体的算法介绍,及Modularity Measure值计算,可以参考这里:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值