pytorch 从头开始YOLOV3(三):训练过程中的真值标签

1.获得真值标签用于计算损失 从数据集获得的真值标签为整个样本的标签,而在训练过程中预测的标签是每一个特征图上每一个像素的(x,y,w,h,c),因此需要把对每一个特征图上每一个像素制作相应真值标签. 首先,初始化真值标签数组. nB = target.size(0) #batc...

2019-02-26 16:16:56

阅读数 347

评论数 0

pytorch 从头开始YOLOV3(二):训练模型

1.基本流程 pytorch在训练过程有一个很基本的流程,正常情况下就按这个流程就能够训练模型: 1.加载模型,2初始化数据,3.预定义优化器,4.训练 # 模型加载 model = Darknet(opt.model_config_path) # pytroch函...

2019-02-26 10:43:35

阅读数 973

评论数 0

pytorch 从头开始YOLOV3(一):COCO数据集准备和读取

YOLOV3是工业上可以用的兼顾速度和准确率的一个深度学习目标检测模型,本系列文章将详细解释该模型的构成和实现,本文代码借鉴:https://github.com/eriklindernoren/PyTorch-YOLOv3 YOLOv3: An Incremental Improvement:...

2019-02-25 14:33:39

阅读数 1505

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭