[SCOI2009] 粉刷匠

题目传送-Luogu4158

题目传送-BZOJ1296

题意:

\(n\)条长度为\(m\)的木板,每一格有一个目标颜色(一共两种),初始无色。
每次操作可以将一个木板的一段区间染成一种颜色,一个格子最多只能染一次。总共能有\(k\)次操作机会
问最多能染多少符合目标颜色的格子
\(n,m \le 50,T \le 2500\)

题解:

每行\(DP\)一下
总共背包一下
没什么好讲的。。

过程:

一切顺利

代码:

const int N=60,M=60,T=2510;
int n,m,K;
int f[N][M][T][3];
int g[N][T],val[N][T];
char s[M];
inline int trans(char ch) {
    return ch-'0';
}
// inline void Min(int &x,int y) {x=min(x,y);}
inline void Max(int &x,int y) {x=max(x,y);}
signed main() {
    read(n); read(m); read(K);
    mem(f,-63);
    for(int i=1;i<=n;i++) {
        scanf("%s",s+1);
        f[i][0][0][2]=0;
        for(int j=1;j<=m;j++) {
            for(int k=0;k<=min(j,K);k++)
                for(int col=0;col<3;col++) {
                    int fl=(col==trans(s[j]));
                    f[i][j][k][col]=f[i][j-1][k][col]+fl;
                    if(k>0) {
                        if(col!=2) {
                            for(int fr=0;fr<3;fr++)
                                Max(f[i][j][k][col],f[i][j-1][k-1][fr]+fl);
                            
                        } else {
                            for(int fr=0;fr<3;fr++)
                                Max(f[i][j][k][col],f[i][j-1][k][fr]);
                        }
                    }
                }
        }
    }
    for(int i=1;i<=n;i++)
        for(int k=0;k<=min(m,K);k++)
            for(int col=0;col<3;col++)
                Max(val[i][k],f[i][m][k][col]);
    for(int i=1;i<=n;i++) {
        for(int k=0;k<=K;k++)
            for(int c=0;c<=min(k,m);c++)
                Max(g[i][k],g[i-1][k-c]+val[i][c]);
    }
    // for(int i=1;i<=n;i++) {
    //  for(int j=0;j<=K;j++)
    //      printf("%d ",g[i][j]);
    //  puts("");
    // }
    printf("%d\n",g[n][K]);
    return 0;
}
/*
3 6 3
111111
000000
001100
*/

用时:15min

转载于:https://www.cnblogs.com/functionendless/p/9535252.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值