Java线程池ThreadPoolExecutor参数解析

本文详细解析了ThreadPoolExecutor构造函数的各个参数含义及其工作原理,包括核心线程池大小、最大线程池大小、线程存活时间等,并介绍了常用的阻塞队列类型及拒绝策略。

ThreadPoolExecutor构造函数

public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler)

1.corePoolSize

核心线程池大小如果运行的线程少于corePoolSize,则创建新线程来处理请求,即使其他辅助线程是空闲的。

2.maximumPoolSize

表示最大线程池的大小,如果运行的线程多于corePoolSize 而少于 maximumPoolSize,则仅当阻塞队列满时才创建新线程。如果设置的corePoolSize和 maximumPoolSize相同,则创建了固定大小的线程池(例如newFixThreadPool)。

3.keepAliveTime 

线程池大小超过corePoolSize时,超过部分的空闲线程存活的时间,TimeUnit 时间单位。

4.ThreadFactory

创建线程的线程工厂。

5.BlockingQueue

用于保存等待执行的任务的阻塞队列。
ArrayBlockingQueue
一个基于数组结构的有界阻塞队列,此队列按 FIFO(先进先出)原则对元素进行排序。
LinkedBlockingQueue
一个基于链表结构的阻塞队列,此队列按FIFO (先进先出) 排序元素,吞吐量通常要高于ArrayBlockingQueue。静态工厂方法Executors.newFixedThreadPool()使用了这个队列。
SynchronousQueue
一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于LinkedBlockingQueue,静态工厂方法Executors.newCachedThreadPool使用了这个队列。
PriorityBlockingQueue
一个具有优先级的无限阻塞队列。
PriorityBlockingQueue里面存储的对象必须是实现Comparable接口。队列通过这个接口的compare方法确定对象的priority。
PriorityBlockingQueue队列添加新元素时候不是将全部元素进行顺序排列,而是从某个指定位置开始将新元素与之比较,一直比到队列头,这样既能保证队列头一定是优先级最高的元素,又能减少排序带来的性能消耗(个人判断,仅供参考),可以查看PriorityBlockingQueue源码,添加元素有调用一个方法是PriorityQueue.siftUpUsingComparator(或siftUpComparable)。
这个方法里有个排序算法不是全部排序。
private void siftUpComparable(int k, E x) {
        Comparable<? super E> key = (Comparable<? super E>) x;
        while (k > 0) {
            int parent = (k - 1) >>> 1;
            Object e = queue[parent];
            if (key.compareTo((E) e) >= 0)
                break;
            queue[k] = e;
            k = parent;
        }
        queue[k] = key;
}
但是这样会出现一个情况,取完队列头时候,后面的剩余的元素不是排序的,岂不是不符合要求了,继续查看源码,发现每取一个头元素时候,都会对剩余的元素做一次调整,这样就能保证每次队列头的元素都是优先级最高的元素,查看取元素时候调用的一个方法PriorityQueue.:
private void siftDown(int k, E x) {
        if (comparator != null)
            siftDownUsingComparator(k, x);
        else
            siftDownComparable(k, x);
    }
private void siftDownUsingComparator(int k, E x) {
	int half = size >>> 1;
	while (k < half) {
		int child = (k << 1) + 1;
		Object c = queue[child];
		int right = child + 1;
		if (right < size &&
			comparator.compare((E) c, (E) queue[right]) > 0)
			c = queue[child = right];
		if (comparator.compare(x, (E) c) <= 0)
			break;
		queue[k] = c;
		k = child;
	}
	queue[k] = x;
}

6.RejectedExecutionHandler

CallerRunsPolicy
在调用execute的线程里面执行此command,会阻塞入口
实例代码:
//在调用execute的线程里面执行此command,会阻塞入口
ThreadPoolExecutor threadPoolExecutor3 = new ThreadPoolExecutor(1, 1,
                1000, TimeUnit.MICROSECONDS, new LinkedBlockingDeque<>(2),
                new ThreadPoolExecutor.CallerRunsPolicy());
        for (int i = 1; i <= 4; i++) {
            final int count = i;
            System.out.println("execute" + i);
            threadPoolExecutor3.execute(() -> {
                try {
                    Thread.sleep(1000);//此任务耗时1s
                    System.out.println("线程" + Thread.currentThread().getName() + "完成任务:"
                            + count + "   时间为:" + System.currentTimeMillis());
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
       });
}
运行结果:

结果分析:
从图中结果可以看到任务4是mian线程执行的且为立即执行的,由于不用新建线程执行,所以比第一个任务还要先执行完。
AbortPolicy
默认的阻塞策略,不执行此任务,而且直接抛出一个运行时异常。
实例代码:
ThreadPoolExecutor threadPoolExecutor3 = new ThreadPoolExecutor(1, 1,
                1000, TimeUnit.MICROSECONDS, new LinkedBlockingDeque<>(2),
                new ThreadPoolExecutor.AbortPolicy());
        for (int i = 1; i <= 4; i++) {
            final int count = i;
            System.out.println("execute" + i);
            threadPoolExecutor3.execute(() -> {
                try {
                    Thread.sleep(1000);//此任务耗时1s
                    System.out.println("线程" + Thread.currentThread().getName() + "完成任务:"
                            + count + "   时间为:" + System.currentTimeMillis());
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
        });
}
运行结果:
结果分析:
从图中结果可以看出放入任务4时,抛出异常。
DiscardOldestPolicy
该策略将丢弃阻塞队列中即将执行的任务,并尝试执行当前任务。
实例代码:
ThreadPoolExecutor threadPoolExecutor3 = new ThreadPoolExecutor(1, 1,
                1000, TimeUnit.MICROSECONDS, new LinkedBlockingDeque<>(2),
                new ThreadPoolExecutor.DiscardOldestPolicy());
        for (int i = 1; i <= 4; i++) {
            final int count = i;
            System.out.println("execute" + i);
            threadPoolExecutor3.execute(() -> {
                try {
                    Thread.sleep(1000);//此任务耗时1s
                    System.out.println("线程" + Thread.currentThread().getName() + "完成任务:"
                            + count + "   时间为:" + System.currentTimeMillis());
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
        });
}
运行结果:
结果分析:
图中结果可以看出任务1正在执行时,2,3进入阻塞队列,4来的时候,阻塞队列已满,所以把在队列头的任务2丢弃。
DiscardPolicy
该策略将丢弃当前任务。
实例代码:
ThreadPoolExecutor threadPoolExecutor3 = new ThreadPoolExecutor(1, 1,
                1000, TimeUnit.MICROSECONDS, new LinkedBlockingDeque<>(2),
                new ThreadPoolExecutor.DiscardPolicy());
        for (int i = 1; i <= 4; i++) {
            final int count = i;
            System.out.println("execute" + i);
            threadPoolExecutor3.execute(() -> {
                try {
                    Thread.sleep(1000);//此任务耗时1s
                    System.out.println("线程" + Thread.currentThread().getName() + "完成任务:"
                            + count + "   时间为:" + System.currentTimeMillis());
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
        });
}
运行结果:
结果分析:
可以看到任务1,和队列中的任务2、3都执行了,超出队列的任务4被直接丢弃。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值