OpenCV-Python
文章平均质量分 53
OpenCV图像识别基础
清山博客
多闻阙疑,慎言其余,则寡尤;多见阙殆,慎行其余,则寡悔。言寡尤,行寡悔。
展开
-
OpenCV+Python识别机读卡
正常机读卡是通过读卡机读取识别结果的,目前OpenCV已经这么强大了,尝试着用OpenCV+Python来识别机读卡。1.识别答题卡中每题选中项结果。1.不识别准考证号。(暂不识别,后面有需要再补充此部分)2.不识别101-106题(这些题实际情况下经常用不到,如果要识别原理也一样)原创 2024-08-24 21:25:27 · 598 阅读 · 0 评论 -
8.OpenCV-识别身份证号码(Python)
1.将身份证号中的0,1,2,3,4,5,6,7,8,9作为模板,与身份证照片中的身份证号码区域进行模板匹配。3.如无法识别你的图片,请手动调试代码,注释都在代码里,修改对应步骤参数,多试几次。1.对输入身份证照片有要求,必须是完全的身份证照片,不能有背景,不能变形。通过OpenCV识别身份证照片上的身份证号码(仅识别身份证号码)2.先要制作一个身份证号码模板,我这里弄了一个,基本上可以用。2.只识别了身份证号区域,如需识别其他信息,可以自行修改代码。4.识别出身份证号码,并在图中标记出识别结果。原创 2023-06-26 15:24:39 · 5646 阅读 · 2 评论 -
7.OpenCV-图像轮廓
CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部,也就是,函数只保留他们的终点部分。RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部份的外部边界,第二层是空洞的边界。遍历轮廓,通过计算面积比,就可以找到轮廓特征,也就筛选出我们感兴趣的轮廓了。RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次(常用这个)RETR_EXTERNAL:只检最外面的轮廊。原创 2023-06-16 15:29:20 · 3059 阅读 · 1 评论 -
6.Opencv-图像腐蚀、膨胀(开运算,闭运算)
这个操作会把前景物体的边界腐蚀掉。卷积核沿着图像滑动,如果与卷积核对应的图像的所有像素值都是1,那么该区域的所有像素值就是1,否则为0。语法:cv2.morphologyEx(img,cv2.MORPH_CLOSE,kernel)黑帽=闭运算结果-原始输入(cv2.MORPH_BLACKHAT)礼帽=原始输入-开运算结果(cv2.MORPH_TOPHAT)梯度=膨胀-腐蚀(cv2.MORPH_GRADIENT)表示迭代腐蚀的次数,通俗的说就是腐蚀多少次。表示迭代腐蚀的次数,通俗的说就是腐蚀多少次。原创 2023-06-14 15:30:42 · 1501 阅读 · 1 评论 -
5.Opencv-图像滤波(均值,方框,高斯,中值,双边滤波)
这里的文章写的比较清楚,直接链过去了。原创 2023-06-14 14:04:33 · 1456 阅读 · 0 评论 -
4.OpenCV-图像阈值
cv2.THRESH_BINARY 超过值部取maxval(最大值),否则取0。cv2.THRESH_BINARY_INV THRESH_BINARY的反转。cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转。cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0。cv2.THRESH_TRUNC 大于阈值部分设为阈值,否则不变。src:输入图,只能输入单通道图像,通常来说为灰度图。原创 2023-06-14 13:36:30 · 120 阅读 · 0 评论 -
3.OpenCV-边界填充
【代码】3.OpenCV-边界填充。原创 2023-06-14 13:11:50 · 381 阅读 · 0 评论 -
2.OpenCV 读取和显示图像-BGR颜色通道
【代码】2.OpenCV 读取和显示图像-BGR颜色通道。原创 2023-06-14 12:52:48 · 960 阅读 · 0 评论 -
1.OpenCV 运行环境配置(Python)
安装时勾选了添加环境变量,在cmd里就可以直接用python命令了,如果安装时没勾选添加环境变量,需手动加一下。在安装OpenCV前,我们可以设置下pip的源,用cmd进入Python安装目录下的Scripts目录,pip.exe在这个目录下。这里我们用直接编译好的文件(自己编译太麻烦,一时半会儿弄不好),通过Python的pip命令进行安装。3.win+r 运行cmd命令,输入:python,可以检查是否安装成功,并查看python版本。至此,OpenCV+Python 的运行环境就配置好了。原创 2023-06-13 20:55:51 · 4155 阅读 · 0 评论
分享