[BZOJ2693]jzptab

Description
\(\sum\limits_{i=1}^n\sum\limits_{j=1}^m lcm(i,j)\),答案模1e9+9输出,多组询问

Input
一个正整数T表示数据组数
接下来T行 每行两个正整数 表示N、M

Output
T行 每行一个整数 表示第i组数据的结果

Sample Input
1
4 5

Sample Output
122

HINT
T <= 10000
N, M<=10000000


我们令n<m,然后将柿子化简
\[\sum\limits_{i=1}^n\sum\limits_{j=1}^m lcm(i,j)\]
\[\sum\limits_{i=1}^n\sum\limits_{j=1}^m \dfrac{i\times j}{\gcd(i,j)}\]
\[\sum\limits_{d=1}^n\sum\limits_{i=1}^n\sum\limits_{j=1}^m\dfrac{i\times j}{d}[\gcd(i,j)=d]\]
\[\sum\limits_{d=1}^n\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}\dfrac{d^2\times i\times j}{d}[\gcd(i,j)=1]\]
\[\sum\limits_{d=1}^n d\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}i\times j\sum\limits_{x|i,x|j}\mu(x)\]
\[\sum\limits_{d=1}^n d\sum\limits_{x=1}^{\lfloor\frac{n}{d}\rfloor}\mu(x)\times x^2\sum\limits_{i=1}^{\lfloor\frac{n}{dx}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{dx}\rfloor}i\times j\]
我们发现最后那个是等差数列,继续化简
\[\sum\limits_{d=1}^n d\sum\limits_{x=1}^{\lfloor\frac{n}{d}\rfloor}\mu(x)\times x^2\dfrac{\lfloor\frac{n}{dx}\rfloor(\lfloor\frac{n}{dx}\rfloor+1)\lfloor\frac{m}{dx}\rfloor(\lfloor\frac{m}{dx}\rfloor+1)}{4}\]
然后我们令\(T=dx\),那么得到
\[\sum\limits_{T=1}^n\dfrac{\lfloor\frac{n}{T}\rfloor(\lfloor\frac{n}{T}\rfloor+1)\lfloor\frac{m}{T}\rfloor(\lfloor\frac{m}{T}\rfloor+1)}{4}T\sum\limits_{x|T}\mu(x)x\]
我们设\(f(T)=\sum\limits_{x|T}\mu(x)x\),预处理出f,就可以分块了

\(g(x)=\mu(x)x\),当a,b互质,\(g(a)\times g(b)=ab\mu(a)\mu(b)=ab\mu(ab)=g(ab)\),所以g是积性函数,根据莫比乌斯反演的性质,f也是积性函数

\(T=\prod\limits_{i=1}^k P_i^{x_i}\)\(f(P_i^{x_i})=(1-P_i)\),那么
\[f(T)=\prod\limits_{i=1}^k(1-P_i)\]
这样子我们可以在\(O(n)\)时间内线筛出来,然后维护一下\(T\times f(T)\)的前缀和,然后就可以在\(O(\sqrt N)\)的时间内完成每次询问

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
    int x=0,f=1;char ch=getchar();
    for (;ch<'0'||ch>'9';ch=getchar())  if (ch=='-')    f=-1;
    for (;ch>='0'&&ch<='9';ch=getchar())    x=(x<<1)+(x<<3)+ch-'0';
    return x*f;
}
inline void print(int x){
    if (x>=10)  print(x/10);
    putchar(x%10+'0');
}
const int N=1e7,p=1e8+9;
int prime[N+10],f[N+10],tot;
bool inprime[N+10];
void prepare(){
    f[1]=1;
    for (int i=2;i<=N;i++){
        if (!inprime[i])    prime[++tot]=i,f[i]=1-i+p;
        for (int j=1;j<=tot&&i*prime[j]<=N;j++){
            inprime[i*prime[j]]=1;
            if (i%prime[j]==0){
                f[i*prime[j]]=f[i];
                break;
            }
            f[i*prime[j]]=1ll*f[i]*f[prime[j]]%p;
        }
    }
    for (int i=1;i<=N;i++)  f[i]=(f[i-1]+1ll*i*f[i]%p)%p;
}
int get(int x){return (1ll*x*(x+1)>>1)%p;}
int main(){
    prepare();
    for (int Data=read();Data;Data--){
        int n=read(),m=read(),pos,Ans=0;
        if (n>m)    swap(n,m);
        for (int T=1;T<=n;T=pos+1){
            pos=min(n/(n/T),m/(m/T));
            Ans=(Ans+1ll*get(n/T)*get(m/T)%p*(f[pos]-f[T-1]+p)%p)%p;
        }
        printf("%d\n",Ans);
    }
    return 0;
}

转载于:https://www.cnblogs.com/Wolfycz/p/9489894.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值