[SDOI2011]计算器

Description
你被要求设计一个计算器完成以下三项任务:
1、给定y,z,p,计算y^z Mod p 的值;
2、给定y,z,p,计算满足xy≡ z ( mod p )的最小非负整数;
3、给定y,z,p,计算满足y^x ≡ Z ( mod p)的最小非负整数。

Input
输入包含多组数据。
第一行包含两个正整数T,K分别表示数据组数和询问类型(对于一个测试点内的所有数据,询问类型相同)。
以下行每行包含三个正整数y,z,p,描述一个询问。

Output
对于每个询问,输出一行答案。对于询问类型2和3,如果不存在满足条件的,则输出“Orz, I cannot find x!”,注意逗号与“I”之间有一个空格。

Sample Input 1
3 1
2 1 3
2 2 3
2 3 3

Sample Output 1
2
1
2

Sample Input 2
3 2
2 1 3
2 2 3
2 3 3

Sample Output 2
2
1
0

Sample Input 3
4 3
2 1 3
2 2 3
2 3 3
2 4 3

Sample Output 3
0
1
Orz, I cannot find x!
0

HINT
对于100%的数据,1<=y,z,p<=10^9,P为质数,1<=T<=10。


我们把子任务分开处理。
第一个快速幂即可
第二个扩展欧几里得即可
第三个BSGS即可
这题做完了(其实是我懒得讲BSGS,推荐一个写的不错的博客)

/*program from Wolfycz*/
#include<map>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
    int x=0,f=1;char ch=getchar();
    for (;ch<'0'||ch>'9';ch=getchar())  if (ch=='-')    f=-1;
    for (;ch>='0'&&ch<='9';ch=getchar())    x=(x<<1)+(x<<3)+ch-'0';
    return x*f;
}
inline void print(int x){
    if (x>=10)  print(x/10);
    putchar(x%10+'0');
}
namespace quick_mod{
    int mlt(int a,int b,int p){
        int res=1;
        for (;b;b>>=1,a=1ll*a*a%p)  if (b&1)    res=1ll*res*a%p;
        return res;
    }
    void main(int T){
        for (int i=1;i<=T;i++){
            int a=read(),b=read(),p=read();
            printf("%d\n",mlt(a,b,p));
        }
    }
};
namespace exgcd_solve{
    int gcd(int a,int b){return !b?a:gcd(b,a%b);}
    void exgcd(int a,int b,int &x,int &y){
        if (!b){x=1,y=0;return;}
        exgcd(b,a%b,x,y);
        int t=x; x=y,y=t-a/b*y;
    }
    void main(int T){
        for (int i=1;i<=T;i++){
            int a=read(),c=read(),b=read(),x,y;
            int d=gcd(a,b);
            if (c%d){
                printf("Orz, I cannot find x!\n");
                continue;
            }
            a/=d,b/=d,c/=d;
            exgcd(a,b,x,y);
            x=(1ll*x*c%b+b)%b;
            printf("%d\n",x);
        }
    }
};
namespace BSGS_solve{
    map<int,int>mp;
    int mlt(int a,int b,int p){
        int res=1;
        for (;b;b>>=1,a=1ll*a*a%p)  if (b&1)    res=1ll*res*a%p;
        return res;
    }
    int gcd(int a,int b){return !b?a:gcd(b,a%b);}
    int work(int a,int b,int p){
        a%=p,b%=p;
        int d=gcd(a,p),t=1,cnt=0;
        while (d!=1){
            if (b%d)    return -1;
            p/=d,b/=d,t=1ll*t*a/d%p,cnt++;
            if (b==t)   return cnt;
            d=gcd(a,p);
        }
        int m=sqrt(p)+1,sum=b;
        for (int i=0;i<=m;i++)  mp[sum]=i,sum=1ll*sum*a%p;
        int tmp=mlt(a,m,p); sum=t;
        for (int i=1;i<=m;i++){
            sum=1ll*sum*tmp%p;
            if (mp[sum])    return i*m-mp[sum]+cnt;
        }
        return -1;
    }
    void main(int T){
        for (int i=1;i<=T;i++){
            mp.clear();
            int a=read(),b=read(),p=read();
            int Ans=work(a,b,p);
            printf(Ans==-1?"Orz, I cannot find x!\n":"%d\n",Ans);
        }
    }
};
int main(){
    int T=read(),type=read();
    if (type==1)    quick_mod::main(T);
    if (type==2)    exgcd_solve::main(T);
    if (type==3)    BSGS_solve::main(T);
    return 0;
}

转载于:https://www.cnblogs.com/Wolfycz/p/9519670.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值