Description
你被要求设计一个计算器完成以下三项任务:
1、给定y,z,p,计算y^z Mod p 的值;
2、给定y,z,p,计算满足xy≡ z ( mod p )的最小非负整数;
3、给定y,z,p,计算满足y^x ≡ Z ( mod p)的最小非负整数。
Input
输入包含多组数据。
第一行包含两个正整数T,K分别表示数据组数和询问类型(对于一个测试点内的所有数据,询问类型相同)。
以下行每行包含三个正整数y,z,p,描述一个询问。
Output
对于每个询问,输出一行答案。对于询问类型2和3,如果不存在满足条件的,则输出“Orz, I cannot find x!”,注意逗号与“I”之间有一个空格。
Sample Input 1
3 1
2 1 3
2 2 3
2 3 3
Sample Output 1
2
1
2
Sample Input 2
3 2
2 1 3
2 2 3
2 3 3
Sample Output 2
2
1
0
Sample Input 3
4 3
2 1 3
2 2 3
2 3 3
2 4 3
Sample Output 3
0
1
Orz, I cannot find x!
0
HINT
对于100%的数据,1<=y,z,p<=10^9,P为质数,1<=T<=10。
我们把子任务分开处理。
第一个快速幂即可
第二个扩展欧几里得即可
第三个BSGS即可
这题做完了(其实是我懒得讲BSGS,推荐一个写的不错的博客)
/*program from Wolfycz*/
#include<map>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x>=10) print(x/10);
putchar(x%10+'0');
}
namespace quick_mod{
int mlt(int a,int b,int p){
int res=1;
for (;b;b>>=1,a=1ll*a*a%p) if (b&1) res=1ll*res*a%p;
return res;
}
void main(int T){
for (int i=1;i<=T;i++){
int a=read(),b=read(),p=read();
printf("%d\n",mlt(a,b,p));
}
}
};
namespace exgcd_solve{
int gcd(int a,int b){return !b?a:gcd(b,a%b);}
void exgcd(int a,int b,int &x,int &y){
if (!b){x=1,y=0;return;}
exgcd(b,a%b,x,y);
int t=x; x=y,y=t-a/b*y;
}
void main(int T){
for (int i=1;i<=T;i++){
int a=read(),c=read(),b=read(),x,y;
int d=gcd(a,b);
if (c%d){
printf("Orz, I cannot find x!\n");
continue;
}
a/=d,b/=d,c/=d;
exgcd(a,b,x,y);
x=(1ll*x*c%b+b)%b;
printf("%d\n",x);
}
}
};
namespace BSGS_solve{
map<int,int>mp;
int mlt(int a,int b,int p){
int res=1;
for (;b;b>>=1,a=1ll*a*a%p) if (b&1) res=1ll*res*a%p;
return res;
}
int gcd(int a,int b){return !b?a:gcd(b,a%b);}
int work(int a,int b,int p){
a%=p,b%=p;
int d=gcd(a,p),t=1,cnt=0;
while (d!=1){
if (b%d) return -1;
p/=d,b/=d,t=1ll*t*a/d%p,cnt++;
if (b==t) return cnt;
d=gcd(a,p);
}
int m=sqrt(p)+1,sum=b;
for (int i=0;i<=m;i++) mp[sum]=i,sum=1ll*sum*a%p;
int tmp=mlt(a,m,p); sum=t;
for (int i=1;i<=m;i++){
sum=1ll*sum*tmp%p;
if (mp[sum]) return i*m-mp[sum]+cnt;
}
return -1;
}
void main(int T){
for (int i=1;i<=T;i++){
mp.clear();
int a=read(),b=read(),p=read();
int Ans=work(a,b,p);
printf(Ans==-1?"Orz, I cannot find x!\n":"%d\n",Ans);
}
}
};
int main(){
int T=read(),type=read();
if (type==1) quick_mod::main(T);
if (type==2) exgcd_solve::main(T);
if (type==3) BSGS_solve::main(T);
return 0;
}