51nod 1256 乘法逆元(扩展欧几里得算法)

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的。
Input
输入2个数M, N中间用空格分隔(1 <= M < N <= 10^9)
Output
输出一个数K,满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的。
Input示例
2 3
Output示例
2
唔。。这道题其实就是一个扩展欧几里得的模板题,诶你们应该都知道扩展欧几里得是干嘛的吧?好吧还是省去百度的时间吧=M=。
扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式: ax+by = gcd(a, b) =d(解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。
然后为了防止x是负数,一直加n加到正数为止:
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long ll;
ll m,n,k;
void extend_Euclid(ll a,ll b,ll &x,ll &y)  
{  
    if(b==0)  
    {  
        x=1;  
        y=0;  
        return;  
    }  
    extend_Euclid(b,a%b,x,y);  
    int tmp=x;  
    x=y;  
    y=tmp-(a/b)*y;  
}  
int main()
{
	int i,j,k;
	ll x,y;
	scanf("%lld%lld",&m,&n);
	extend_Euclid(m,n,x,y);
	while(x<0)
	{
		x+=n;
	}
	printf("%d\n",x);
	return 0;
}




阅读更多
个人分类: 51nod基础题
上一篇51nod 1264 线段相交(叉积)
下一篇51nod 1242 斐波那契数列的第N项(矩阵快速幂)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭