1.最终我们需要查询的所有数据如下:
通过2个表格查询最终的结果,并实现分页效果
SELECT
b.borrow_no,
b.borrow_name,
b.contract_amount,
b.annualized_rate,
b.period_length,
bd.profit_plan
FROM
borrow b,
borrow_detail bd
WHERE
b.borrow_no = bd.borrow_no
AND b.borrow_type = '1'
AND b.`status` = '7'
AND b.borrow_no LIKE 'JJT%'
AND bd.interest_end_date >= NOW( )
AND platform = 'HLW'
AND period_length = '10';
2.如果我们需要查询的是前10条数据:
SELECT
b.borrow_no,
b.borrow_name,
b.contract_amount,
b.annualized_rate,
b.period_length,
bd.profit_plan
FROM
borrow b,
borrow_detail bd
WHERE
b.borrow_no = bd.borrow_no
AND b.borrow_type = '1'
AND b.`status` = '7'
AND b.borrow_no LIKE 'JJT%'
AND bd.interest_end_date >= NOW( )
AND platform = 'HLW'
AND period_length = '10'
LIMIT 0,10; ##从第0条之后开始的数据,到第10条数据;
3.查询第2页或第3页数据
- 只需要把LIMIT 0,10 更改换LIMIT 10, 20,即为第2页数据( 代表获取从第10条到第20条数据)
- 第三页数据, 更换为更改换LIMIT 20, 30
获取第N页数据,如何表示呢?
page_num 代表具体第多少页
pages代表每页有多少条数据
- 通过如上,你是否看到一些规律了呢?
- 第一个数据,(page_num-1)*pages
- 第二个数据, page_num *pages
出自:https://blog.csdn.net/chenmozhe22/article/details/81908237?utm_medium=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.channel_param&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.channel_param