团体程序设计天梯赛L3-007 天梯地图

L3-007. 天梯地图

时间限制
300 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
陈越

本题要求你实现一个天梯赛专属在线地图,队员输入自己学校所在地和赛场地点后,该地图应该推荐两条路线:一条是最快到达路线;一条是最短距离的路线。题目保证对任意的查询请求,地图上都至少存在一条可达路线。

输入格式:

输入在第一行给出两个正整数N(2 <= N <=500)和M,分别为地图中所有标记地点的个数和连接地点的道路条数。随后M行,每行按如下格式给出一条道路的信息:

V1 V2 one-way length time

其中V1V2是道路的两个端点的编号(从0到N-1);如果该道路是从V1V2的单行线,则one-way为1,否则为0;length是道路的长度;time是通过该路所需要的时间。最后给出一对起点和终点的编号。

输出格式:

首先按下列格式输出最快到达的时间T和用节点编号表示的路线:

Time = T: 起点 => 节点1 => ... => 终点

然后在下一行按下列格式输出最短距离D和用节点编号表示的路线:

Distance = D: 起点 => 节点1 => ... => 终点

如果最快到达路线不唯一,则输出几条最快路线中最短的那条,题目保证这条路线是唯一的。而如果最短距离的路线不唯一,则输出途径节点数最少的那条,题目保证这条路线是唯一的。

如果这两条路线是完全一样的,则按下列格式输出:

Time = T; Distance = D: 起点 => 节点1 => ... => 终点

输入样例1:
10 15
0 1 0 1 1
8 0 0 1 1
4 8 1 1 1
5 4 0 2 3
5 9 1 1 4
0 6 0 1 1
7 3 1 1 2
8 3 1 1 2
2 5 0 2 2
2 1 1 1 1
1 5 0 1 3
1 4 0 1 1
9 7 1 1 3
3 1 0 2 5
6 3 1 2 1
5 3
输出样例1:
Time = 6: 5 => 4 => 8 => 3
Distance = 3: 5 => 1 => 3
输入样例2:
7 9
0 4 1 1 1
1 6 1 3 1
2 6 1 1 1
2 5 1 2 2
3 0 0 1 1
3 1 1 3 1
3 2 1 2 1
4 5 0 2 2
6 5 1 2 1
3 5
输出样例2:
Time = 3; Distance = 4: 3 => 2 => 5

解题思路:比较烦的最短路

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>

using namespace std;

#define LL long long
const int INF=0x3f3f3f3f;

int cnt;
int s[600],nt[1000090],e[1000090];
int p1[600],p2[600],visit[600];
int dis1[600],t[600],dis2[600],sum[600];

struct Edge
{
    int dis,t;
}x[1000090];

struct node1
{
    int id,dis;
    friend bool operator <(node1 a,node1 b)
    {
        return a.dis>b.dis;
    }
}pre1,nt1;

struct node2
{
    int id,t;
    friend bool operator <(node2 a,node2 b)
    {
        return a.t>b.t;
    }
}pre2,nt2;

void Dijkstra1(int ss,int ee)
{
    pre1.id=ss,pre1.dis=0;
    priority_queue<node1>q;
    memset(visit,0,sizeof visit);
    memset(dis1,INF,sizeof dis1);
    memset(sum,INF,sizeof sum);
    sum[ss]=0,dis1[ss]=0;
    q.push(pre1);
    while(!q.empty())
    {
        pre1=q.top();
        q.pop();
        visit[pre1.id]=1;
        if(pre1.id==ee) break;
        for(int i=s[pre1.id];~i;i=nt[i])
        {
            int ee=e[i];
            if(visit[ee]) continue;
            if(dis1[ee]>dis1[pre1.id]+x[i].dis)
            {
                dis1[ee]=dis1[pre1.id]+x[i].dis;
                sum[ee]=sum[pre1.id]+1;
                p1[ee]=pre1.id;
                nt1.dis=dis1[ee];
                nt1.id=ee;
                q.push(nt1);
            }
            else if(dis1[ee]==dis1[pre1.id]+x[i].dis&&sum[ee]>sum[pre1.id]+1)
            {
                sum[ee]=sum[pre1.id]+1;
                p1[ee]=pre1.id;
            }
        }
    }
}

void Dijkstra2(int ss,int ee)
{
    pre2.id=ss,pre2.t=0;
    priority_queue<node2>q;
    memset(visit,0,sizeof visit);
    memset(t,INF,sizeof t);
    memset(dis2,INF,sizeof dis2);
    t[ss]=0,dis2[ss]=0;
    q.push(pre2);
    while(!q.empty())
    {
        pre2=q.top();
        q.pop();
        visit[pre2.id]=1;
        if(pre2.id==ee) break;
        for(int i=s[pre2.id];~i;i=nt[i])
        {
            int ee=e[i];
            if(visit[ee]) continue;
            if(t[ee]>t[pre2.id]+x[i].t)
            {
                t[ee]=t[pre2.id]+x[i].t;
                dis2[ee]=dis2[pre2.id]+x[i].dis;
                p2[ee]=pre2.id;
                nt2.t=t[ee];
                nt2.id=ee;
                q.push(nt2);
            }
            else if(t[ee]==t[pre2.id]+x[i].t&&dis2[ee]>dis2[pre2.id]+x[i].dis)
            {
                dis2[ee]=dis2[pre2.id]+x[i].dis;
                p2[ee]=pre2.id;
            }
        }
    }
}

int main()
{
    int n,m;
    while(~scanf("%d %d",&n,&m))
    {
        cnt=1;
        memset(s,-1,sizeof s);
        memset(nt,-1,sizeof nt);
        int u,v,k,l,time;
        for(int i=1;i<=m;i++)
        {
            scanf("%d %d %d %d %d",&u,&v,&k,&l,&time);
            nt[cnt]=s[u],s[u]=cnt,e[cnt]=v,x[cnt].dis=l,x[cnt++].t=time;
            if(k==0) nt[cnt]=s[v],s[v]=cnt,e[cnt]=u,x[cnt].dis=l,x[cnt++].t=time;
        }
        scanf("%d %d",&u,&v);
        Dijkstra1(u,v);
        Dijkstra2(u,v);
        int kk=v,flag=1;
        while(p1[kk]!=u)
        {
            if(p1[kk]!=p2[kk]) {flag=0;break;}
            kk=p1[kk];
        }
        if(flag)
        {
            printf("Time = %d; Distance = %d: %d",t[v],dis1[v],u);
            stack<int>ss;
            kk=v;
            while(kk!=u) {ss.push(kk);kk=p1[kk];}
            while(!ss.empty()) {printf(" => %d",ss.top());ss.pop();}
        }
        else
        {
            printf("Time = %d: %d",t[v],u);
            stack<int>ss;
            kk=v;
            while(kk!=u) {ss.push(kk);kk=p2[kk];}
            while(!ss.empty()) {printf(" => %d",ss.top());ss.pop();}
            printf("\n");
            printf("Distance = %d: %d",dis1[v],u);
            kk=v;
            while(kk!=u) {ss.push(kk);kk=p1[kk];}
            while(!ss.empty()) {printf(" => %d",ss.top());ss.pop();}
        }
        printf("\n");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值