Colab 炼丹笔记

文章介绍了深度学习中关键的训练参数epoch、batch和batchsize的概念及其影响。epoch是指数据集完整遍历神经网络一次,batch是数据分批处理的单位,batchsize则影响优化速度和GPU内存使用。合适的batchsize能提高内存利用率,加速训练,且使梯度下降更准确。文章还提到了检查GPU信息的命令`!nvidia-smi`。
摘要由CSDN通过智能技术生成

常用术语

epochbatchbatch sizeiteration

1 iteration

迭代次数
一个batch向前向后传播次数( 通常为跑完一次数据)

2 epoch

当一个完整的数据集通过神经网络迭代一次并且返回一次的过程称为一个epoch。
然而,当一个epoch对于计算机太过庞大时,就需要把它分成多个小块。

3 batch

批大小
在不能将数据一次性通过神经网络的适合,就需要将数据集分成几个batch.

3 batch size

直观的理解
一个batch中的样本总数( 一次训练所选取的样本数 )
batch size的大小影响模型的优化程度和速度。同时其直接影响到GPU内存的使用情况,假如你GPU显存不大,该数值最好设置小一点。
提出batch size的原因
在没有使用Batch Size之前,这意味着网络在训练时,是一次把所有的数据(整个数据库)输入网络中,然后计算它们的梯度进行反向传播,由于在计算梯度时使用了整个数据库,所以计算得到的梯度方向更为准确。但在这情况下,计算得到不同梯度值差别巨大,难以使用一个全局的学习率,所以这时一般使用Rprop这种基于梯度符号的训练算法,单独进行梯度更新。
在小样本数的数据库中,不使用Batch Sie是可行的,而且效果也很好。但是一旦是大型的数据库,一次性把所有数据输进网络,肯定会引起内存的爆炸。所以就提出Batch Size的概念
batch size设置合适时的优点
1、通过并行化提高内存的利用率。就是尽量让你的GPU满载运行,提高训练速度
2、单个epoch的迭代次数减少了,参数的调整也慢了,假如要达到相同的识别精度,需要更多的epoch。
3、适当batch size使得梯度下降方向更加准确。

常用命令

查看显卡信息

!/opt/bin/nvidia-smi

命令行

%%shell

python src/finetune.py
!ls
!git clone https://github.com/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值