# HDU 1258

Sum It Up

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4874    Accepted Submission(s): 2553

Problem Description
Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t=4, n=6, and the list is [4,3,2,2,1,1], then there are four different sums that equal 4: 4,3+1,2+2, and 2+1+1.(A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

Input
The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x1,...,xn. If n=0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12(inclusive), and x1,...,xn will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.

Output
For each test case, first output a line containing 'Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line 'NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distince; the same sum connot appear twice.

Sample Input
4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0

Sample Output
Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25

50+50+50+50+50+25+25+25+25+25+25

//同样的dfs搜索不过需要注意答案的集合中前一个元素必须大于等于后面一个元素

//因为从大到小开始输出，可以先给输入排序再搜索

#include <stdio.h>
#include <algorithm>
using namespace std;
int n,m,flag,cnt=0;
int a[13];
int vis[13];
int c[13],k;
bool cmp(const int &a,const int &b)
{
return a>b;
}

void dfs(int ini,int init)  //和、初始位置
{
if(ini==n)
{
flag=1;
printf("%d",c[0]);
for(int i=1;i<cnt;i++)
printf("+%d",c[i]);
printf("\n");
}
else
{
for(int i=init;i<m;i++)
{
if(!vis[i])
{
ini+=a[i];
vis[i]=1;
c[cnt++]=a[i];
dfs(ini,i+1);
vis[i]=0;  //回溯
ini-=a[i];
cnt--;
while(a[i]==a[i+1])  //避免重复
i++;
}
}
}
}

int main()
{
while(~scanf("%d%d",&n,&m)&&(n+m))
{
for(int i=0;i<m;i++)
{
scanf("%d",&a[i]);
vis[i]=0;
}
sort(a,a+m,cmp);
cnt=flag=0;
printf("Sums of %d:\n",n);
dfs(0,0);
if(!flag)
printf("NONE\n");
}
return 0;
}


#### hdu 1258 Sum It Up （dfs+路径记录）

2014-08-04 18:42:16

#### HDU-1258-Sum It Up

2012-07-27 09:30:54

#### POJ 1258 Agri-Net（最小生成树 Kruskal）

2014-10-22 10:37:18

#### HDU--1258:Sum It Up (DFS)

2014-08-27 15:36:13

#### [伯努利数] 51Nod 1258 序列求和 V4

2017-04-02 13:32:00

#### poj1258 - Agri-Net

2012-08-17 09:45:53

#### hdu 1258

2014-05-26 17:50:56

#### 51nod 1258 序列求和 V4 拉格朗日插值法求自然数幂和

2017-10-07 14:49:17

#### 动态规划背包问题入门

2011年07月07日 328KB 下载

#### UVALive 7270 (hihoCoder 1258) Osu! Master

2016-08-07 19:23:06