PTA-数据结构与算法-最大子列和问题

###最大子序列和问题
给定K个整数组成的序列{ N​1​​, N​2​​, …, N​K​​ },“连续子列”被定义为{ N​i​​, N​i+1​​, …, N​j​​ },其中 1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。

本题旨在测试各种不同的算法在各种数据情况下的表现。各组测试数据特点如下:

数据1:与样例等价,测试基本正确性;
数据2:102个随机整数;
数据3:103个随机整数;
数据4:104个随机整数;
数据5:105个随机整数;

输入格式:

输入第1行给出正整数K (≤100000);第2行给出K个整数,其间以空格分隔。
输出格式:

在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。
输入样例:

6
-2 11 -4 13 -5 -2

输出样例:

20

思路:基础DP。定义两个变量,一个用来记录当前子序列的和,如果小于0则置零。另外一个变量则记录当前最大子序列的和。
代码如下:

#include<iostream>
using namespace std;
int a[100010];
int main()
{
  int n;
  cin>>n;
  for(int i=0;i<n;i++)cin>>a[i];
  int sum=0,max=0;
  for(int j=0;j<n;j++)
  {
    sum+=a[j];//子序列的和
    if(sum>max)max=sum;//更新当前最大值
    if(sum<0)sum=0;//置零
  }
  cout<<max<<endl;
  return 0;
}

©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页