YOLO系列通过多样化的数据增强技术提升模型鲁棒性和检测精度。以下分类详解每种方法的作用及解决的核心问题:
一、几何变换类
-
随机翻转(Flip)
- 作用:生成镜像图像,打破方向敏感性。
- 解决问题:增强模型对物体左右/上下方向的泛化能力。
- 适用场景:对称物体(车辆、行人)、交通标志检测。
-
随机旋转(Rotation)
- 作用:模拟不同拍摄视角下的目标形态。
- 解决问题:避免模型对目标角度过拟合(如倾斜车牌识别)。
- 参数:±30°内,防止过度旋转破坏语义。
-
多尺度缩放(Multi-Scale)
- 作用:随机缩放图像尺寸(如0.5~1.5倍)。
-