Flink写入数据到ClickHouse

文章介绍了如何使用ApacheFlink将数据写入ClickHouse数据库的详细步骤,包括创建ClickHouse表、配置项目依赖、定义Bean实体类、编写ClickHouse的业务写入逻辑以及测试数据写入的实现。主要涉及Flink和ClickHouse的JDBC集成,以及批量插入数据的实现。
摘要由CSDN通过智能技术生成

1.ClickHouse建表

ClickHouse中建表

CREATE TABLE default.test_write
(
    id   UInt16,
    name String,
    age  UInt16
) ENGINE = TinyLog();

2.ClickHouse依赖

Flink开发相关依赖

    <properties>
        <flink.version>1.12.1</flink.version>
        <scala.version>2.12.13</scala.version>
        <clickhouse-jdbc.version>0.1.54</clickhouse-jdbc.version>
        <lombok.version>1.18.12</lombok.version>
    </properties>

    <dependencies>
        <!-- 写入数据到clickhouse -->
        <dependency>
            <groupId>ru.yandex.clickhouse</groupId>
            <artifactId>clickhouse-jdbc</artifactId>
            <version>${clickhouse-jdbc.version}</version>
        </dependency>
        <!-- flink核心API -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-scala_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-common</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner-blink_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-api-java-bridge_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>${lombok.version}</version>
        </dependency>
    </dependencies>

3.Bean实体类

User.java

package com.daniel.bean;

import lombok.Builder;
import lombok.Data;

/**
 * @Author Daniel
 * @Date: 2023/7/3 15:35
 * @Description
 **/

@Data
@Builder
public class User {
    public int id;
    public String name;
    public int age;
}

4.ClickHouse业务写入逻辑

ClickHouseSinkFunction.java

package com.daniel.util;

import com.daniel.bean.User;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.SQLException;

/**
 * @Author Daniel
 * @Date: 2023/7/3 15:36
 * @Description
 **/


public class ClickHouseSinkFunction extends RichSinkFunction<User> {
    Connection conn = null;
    String sql;

    public ClickHouseSinkFunction(String sql) {
        this.sql = sql;
    }

    @Override
    public void open(Configuration parameters) throws Exception {
        super.open(parameters);
        conn = getConn("localhost", 8123, "default");
    }

    @Override
    public void close() throws Exception {
        super.close();
        if (conn != null) {
            conn.close();
        }
    }

    // 定义具体的操作
    @Override
    public void invoke(User user, Context context) throws Exception {
        // 批量插入
        PreparedStatement preparedStatement = conn.prepareStatement(sql);
        preparedStatement.setLong(1, user.id);
        preparedStatement.setString(2, user.name);
        preparedStatement.setLong(3, user.age);
        preparedStatement.addBatch();

        long startTime = System.currentTimeMillis();
        int[] ints = preparedStatement.executeBatch();
        conn.commit();
        long endTime = System.currentTimeMillis();
        System.out.println("批量插入用时:" + (endTime - startTime) + "ms -- 插入数据行数:" + ints.length);
    }

    public Connection getConn(String host, int port, String database) throws SQLException, ClassNotFoundException {
        Class.forName("ru.yandex.clickhouse.ClickHouseDriver");
        String address = "jdbc:clickhouse://" + host + ":" + port + "/" + database;
        conn = DriverManager.getConnection(address);
        return conn;
    }
}
  • open():在SinkFunction实例化后调用,用于初始化连接或资源。这在处理每个并行任务的子任务之前只被调用一次。

  • invoke():定义了在每个元素到达Sink操作时所执行的逻辑。用户需要实现这个方法来定义如何将数据写入外部存储系统或执行其他操作。

  • close():在SinkFunction关闭之前调用,用于释放资源、关闭连接等操作。

5.测试写入类

ClickHouseWriteTest.java

package com.daniel;

import com.daniel.bean.User;
import com.daniel.util.ClickHouseSinkFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;


/**
 * @Author daniel
 * @Date: 2023/7/3 15:37
 * @Description
 **/

public class ClickHouseWriteTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironment();
        // Source
        DataStream<String> ds = env.socketTextStream("localhost", 9999);

        // Transform
        SingleOutputStreamOperator<User> dataStream = ds.map((MapFunction<String, User>) data -> {
            String[] split = data.split(",");
            return User.builder()
                    .id(Integer.parseInt(split[0]))
                    .name(split[1])
                    .age(Integer.parseInt(split[2]))
                    .build();
        });

        // Sink
        String sql = "INSERT INTO default.test_write (id, name, age) VALUES (?,?,?)";
        ClickHouseSinkFunction jdbcSink = new ClickHouseSinkFunction(sql);
        dataStream.addSink(jdbcSink);
        env.execute("flink-clickhouse-write");
    }
}

6.发送数据

使用nc或者任意工具向指定端口发送数据
例如

nc -L -p 9999

发送数据

1,Daniel,25
2,David,38
3,James,16
4,Robert,27

然后启动ClickHouseWriteTest.java程序

在这里插入图片描述

查询数据

select *
from default.test_write;

由于这里是并行插入,所以没有顺序可言

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DanielMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值