[luogu P3648] [APIO2014]序列分割

[luogu P3648] [APIO2014]序列分割

题目描述

小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:

1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);

2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。

每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。

输入输出格式

输入格式:

输入第一行包含两个整数n,k(k+1≤n)。

第二行包含n个非负整数a1,a2,...,an(0≤ai≤10^4),表示一开始小H得到的序列。

输出格式:

第一行包含一个整数,为小H可以得到的最大分数。

第二行输出 k个介于 1 到 n1 之间的整数,表示为了使得总得分最大,你每次操作中分开两个块的位置。第 i 个整数 si​​ 表示第 i 次操作将在 si​​ 和 si+1​​ 之间把块分开。

如果有多种方案使得总得分最大,输出任意一种方案即可。

输入输出样例

输入样例#1:
7 3
4 1 3 4 0 2 3
输出样例#1:
108
1 3 5

说明

你可以通过下面这些操作获得 108108 分:

初始时你有一块 (4, 1, 3, 4, 0, 2, 3)(4,1,3,4,0,2,3)。在第 11 个元素后面分开,获得 4 \times (1 + 3 + 4 + 0 + 2 + 3) = 524×(1+3+4+0+2+3)=52 分。

你现在有两块 (4), (1, 3, 4, 0, 2, 3)(4),(1,3,4,0,2,3)。在第 33 个元素后面分开,获得 (1 + 3) \times (4 + 0 + 2 + 3) = 36(1+3)×(4+0+2+3)=36 分。

你现在有三块 (4), (1, 3), (4, 0, 2, 3)(4),(1,3),(4,0,2,3)。在第 55 个元素后面分开,获得 (4 + 0) \times (2 + 3) = 20(4+0)×(2+3)=20 分。

所以,经过这些操作后你可以获得四块 (4), (1, 3), (4, 0), (2, 3)(4),(1,3),(4,0),(2,3) 并获得 52 + 36 + 20 = 10852+36+20=108 分。

限制与约定

第一个子任务共 11 分,满足 1 \leq k < n \leq 101k<n10。

第二个子任务共 11 分,满足 1 \leq k < n \leq 501k<n50。

第三个子任务共 11 分,满足 1 \leq k < n \leq 2001k<n200。

第四个子任务共 17 分,满足 2 \leq n \leq 1000, 1 \leq k \leq \min{n - 1, 200}2n1000,1kminn1,200。

第五个子任务共 21 分,满足 2 \leq n \leq 10000, 1 \leq k \leq \min{n - 1, 200}2n10000,1kminn1,200。

第六个子任务共 29 分,满足 2 \leq n \leq 100000, 1 \leq k \leq \min{n - 1, 200}2n100000,1kminn1,200。

 

斜率优化DP。还被卡了一会,应该是昨天没有完全理解。今天再努力理解了一下,发现有了新的认识。

显然,对于这一题,切割的顺序是无关的,只要确定断点就好了。

那么很容易就想到一个转移方程:

f[i]=max{f[j]+s[j](s[i]-s[j])}。

而我又get到了新的方法来解——>(正确姿势)

设k<j<i,对于i来说,取j的决策比k更优越,则满足f[j]+s[j](s[i]-s[j])>f[k]+s[k](s[i]-s[k])。

紫经过转化以后,变成了

-s[i]<((f[j]-s[j]^2)-(f[k]-s[k]^2))/(s[j]-s[k])

这很像一个斜率式,我们可以将-s[i]看做点(f[j]-s[j]^2,s[j])和点(f[k]-s[k]^2,s[k])之间连线的斜率,只有满足上式(大于-s[i]),j才比k更优越。

由于-s[i]是单调减的,所以对于i+1,i+2....显然都是取j比取k更优越,所以就可以不考虑k了,直接把它扔掉。

先脱离一下题目,为了方便考虑,我们设当k<j<i且slope(k,j)<-s[c]时,j比k更优。

那我们再考虑一下当k<j<i时,j什么时候是没用的。

设u,v两点间斜率为slope(u,v),当前决策点为c,则

当slope(k,j)>slope(j,i)时,如果slope(k,j)>-s[c],则k比j更优;如果slope(k,j)<-s[c],则slope(j,i)<slope(k,j)<-s[c],此时i比j更优。

所以在这种情况下无论何时,j都不会成为当前最优解。

然后我们便发现,如果我们用一个双端队列把这些可能会被用到的决策点依次存起来(按DP的顺序,也就是下标的从小到大或从大到小),

根据我们上面所提到的,把不需要的决策点去掉,对留下来的点中任意相邻三个点i、j、k,一定有s(k,j)<s(j,i)——也就是说,这个斜率是单调增的(或者对于有些题是单调减)。正如以下这个图片:

现在我们简单说一下如何维护这个单调队列,j1、j2、j3....是单调队列里当前正在维护的决策点,设我们的DP当前处理到了i。这些决策点还在单调队列里当且仅当这些点可能成为i、i+1、i+2...的最优决策点。

现在我们想要计算第i个点的f[i],首先我们要找出单调队列里哪个点是i的最优决策点,我们从队首开始看起。

设队首的两个点为j1、j2,我们计算slope(j1,j2),当slope(j1,j2)<−s[c]),j2比j1更优,我们把j1从单调队列中pop出来,以后也用不到了,然后再对slope(j2,j3)进行比较;

slope(j1,j2)>−s[c],j1比j2更优,且因为队列的单调性,slope(j2,j3)>slope(j1,j2)>−s[c],也就是说j1优于j2优于j3...,则j1是对于当前点i最优的一个决策。

然后有了决策点,我们就可以计算出f[i]。现在我们来考虑将一个点添加到单调队列中去。

假设我们要添加的点为j5(如上图中红点),设队尾的两个点为j3、j4。

我们比较slope(j3,j4)与slope(j4,j5),若slope(j3,j4)>slope(j4,j5),则j4永远不可能是最优决策点,把j4,也就是队尾的点弹出,再依次比较;

slope(j3,j4)<slope(j4,j5)满足斜率单调增的单调性,把j5,也就是DP到的当前节点插入到队尾。

然后再回到这题。这题的条件是当k<j<i时,slope(k,j)>-s[i],j比k更优。那么刚好与上面相反,我们需要维护的是一个上凸包,即斜率越来越小。

还有,由于空间限制,这一题需要滚动数组,所以会有一些细节需要注意。

(Hint:部分摘自:http://www.cnblogs.com/akhpl/p/6715148.html,大力推荐)

code:(话说我的斜率DP写法很少人写啊。。。所以难查错)

 1 %:pragma GCC optimize(2)
 2 #include<bits/stdc++.h>
 3 #define sqr(x) ((x)*(x))
 4 #define LL long long
 5 using namespace std;
 6 const int N=100005;
 7 const double inf=1e18;
 8 int n,k,l[2],r[2],roa[205][N];
 9 LL s[N],f[2][N];
10 struct point {
11     LL x,y; int i;
12     point() {}
13     point(LL _x,LL _y,int _i):x(_x),y(_y),i(_i) {}
14 }st[2][N];
15 int read() {
16     int x=0,f=1; char ch=getchar();
17     while (ch<'0'||ch>'9') f=(ch=='-')?-1:1,ch=getchar();
18     while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
19     return x*f;
20 }
21 double slope(point u,point v) {
22     return u.x==v.x?(u.y<v.y?inf:-inf):1.0*(v.y-u.y)/(v.x-u.x);
23 }
24 LL get(int y,int x,int i,LL k) {
25     while (l[i]<r[i]&&slope(st[i][l[i]],st[i][l[i]+1])>1.0*k) l[i]++;
26     roa[y][x]=st[i][l[i]].i;
27     return st[i][l[i]].y-k*st[i][l[i]].x;
28 }
29 void insert(int i,point cur) {
30     while (l[i]<r[i]&&slope(st[i][r[i]-1],st[i][r[i]])<slope(st[i][r[i]-1],cur)) r[i]--;
31     st[i][++r[i]]=cur;
32 }
33 int main() {
34     n=read(),k=read(),s[0]=0;
35     for (int i=1; i<=n; i++) s[i]=s[i-1]+read();
36     for (int j=1,now,pre; j<=k; j++) {
37         now=j&1,pre=1-now,l[pre]=1,r[pre]=0,st[++r[pre]][pre]=point(0,0,0);
38         for (int i=1; i<=n; i++) {
39             f[now][i]=get(j,i,pre,-s[i]);
40             insert(pre,point(s[i],f[pre][i]-s[i]*s[i],i));
41         }
42     }
43     printf("%lld\n",f[k&1][n]);
44     for (int i=n,j=k; j>=1; j--) i=roa[j][i],printf("%d ",i);
45     return 0;
46 }
View Code

 

转载于:https://www.cnblogs.com/whc200305/p/7659240.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值