蔡高厅高等数学35-柯西定理-泰勒定理

第一节 微分中值定理
一、Rolle 定理
二、Lagrange 定理
三、Cauchy 定理

<Cauchy定理> 条件
设有两个函数, f(x),g(x) 在C[a,b], D(a,b)
且g'(x) <> 0, 则至少存在一点ξ 属于(a,b)
f(b) -f(a) / g(b) - g(a) = f'(ξ) / g'(ξ)

证明分析:8m
不正确的证明方法,使用lagrange 简单两边相除

f'(x) - kg'(x) = 0 ====>
[ f(x) -kg(x) ] ' = 0 (x=ξ)

这是Rolle 定理的结论

证明: 做辅助函数 φ(x) = f(x) - kg(x)

反证:g'(x) <>0, g(b) - g(a) <>0

求 φ(a), φ(b)
φ(a) = φ(b), 满足Rolle 定理, 则至少存在一点
ξ 属于(a,b) 使得 φ(ξ) = 0



辅助练习题:
习题4-1:4,5,6,7*(选做柯西定理)

四、Taylor 定理(20m)
<Taylor>
设 f(x) 在 C[a,b] , f(x) 在 D^(n+1) (a,b) (表示在(a,b)内有直至n+1 阶导数)
, 若x0 在 (a,b) , 则至少存在ξ 属于(a,b) 有

证明:
没听懂。。。


阅读更多

没有更多推荐了,返回首页