布线问题 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 南阳理工学院要进行用电线路改造,现在校长要求设计师设计出一种布线方式,该布线方式需要满足以下条件: 1、把所有的楼都供上电。 2、所用电线花费最少 输入 第一行是一个整数n表示有n组测试数据。(n<5) 每组测试数据的第一行是两个整数v,e. v表示学校里楼的总个数(v<=500) 随后的e行里,每行有三个整数a,b,c表示a与b之间如果建铺设线路花费为c(c<=100)。(哪两栋楼间如果没有指明花费,则表示这两栋楼直接连通需要费用太大或者不可能连通) 随后的1行里,有v个整数,其中第i个数表示从第i号楼接线到外界供电设施所需要的费用。( 0<e<v*(v-1)/2 ) (楼的编号从1开始),由于安全问题,只能选择一个楼连接到外界供电设备。 数据保证至少存在一种方案满足要求。 输出 每组测试数据输出一个正整数,表示铺设满足校长要求的线路的最小花费。 样例输入 1 4 6 1 2 10 2 3 10 3 1 10 1 4 1 2 4 1 3 4 1 1 3 5 6 样例输出 4
这题我用prim算法和kruskal算法都提交了一下
从代码量来看,prim算法更简洁一些,从时间复杂度来看,prim:O(n^2),kruskal:O(mlogm),kruskal更优
kruskal:
#include <iostream> #include <algorithm> #include <cstring> using namespace std; const int Max = 2000000; struct ed { int u; int v; int w; }; ed e[Max]; int f[Max]; int x[Max]; bool cmp(ed a,ed b) { if(a.w<b.w) return true; else return false; } int getf(int v) { if(f[v] == v) return v; else { f[v] = getf(f[v]); return f[v]; } } int merge(int u,int v) { int t1,t2; t1 = getf(f[u]); t2 = getf(f[v]); if(t1 != t2) { f[t2] = t1; return 1; } return 0; } int main() { int n; cin >> n; int vn,en; while(n--) { int sum = 0; int count = 0; int minele; cin >> vn >> en; for(int i = 0; i < en; i++) cin >> e[i].u >> e[i].v >> e[i].w; for(int i = 0; i < vn; i++) cin >> x[i]; minele = *min_element(x,x+vn); sort(e,e+en,cmp); //按权值排序 for(int i = 1; i <= vn; i++) f[i] = i; for(int i = 0; i < en; i++) { if(merge(e[i].u,e[i].v)) { //若u和v不连通 count ++; sum = sum + e[i].w; } if(count == vn-1) { break; } } cout << sum + minele << endl; } return 0; }
prim:
#include <iostream> #include <algorithm> #include <cstring> using namespace std; const int Max = 550; const int inf = 999999999; int dis[Max] ; int e[Max][Max]; int book[Max]; int x[Max]; int main() { int n; int vn,en; cin >> n; while(n--) { cin >> vn >> en; for(int i =1; i <= vn ;i++) for(int j = 1; j <= vn ;j++) e[i][j] = inf; memset(book,0,sizeof(book)); int a,b,c; int sum = 0; int count = 1; for(int i = 0;i < en;i++) { cin >> a >> b >> c; e[a][b] = c; e[b][a] = c; } for(int i = 0; i < vn; i++) cin >> x[i]; int minele = *min_element(x,x+vn); for(int i =1 ; i <= vn;i++) dis[i] = e[1][i]; book[1] = 1; while(count < vn) { int mini = inf; int j; for(int i = 1; i <= vn;i ++) if(book[i]==0&&dis[i] < mini) { mini = dis[i]; j = i; } sum = sum + dis[j]; book[j] = 1; count++; for(int i = 1; i <= vn; i++) if(dis[i] > e[j][i]) //更新顶点i到树的最短距离 dis[i] = e[j][i]; } cout << sum + minele << endl; } return 0; }