原题链接:题目 1004: [递归]母牛的故事
题解:
# include<stdio.h>
int fun(int n)
{
if(n<=3) return n;
else return fun(n-1)+fun(n-3);
}
int main()
{
int n;
while(scanf("%d",&n) && n)
printf("%d\n",fun(n));
return 0;
}
分析:
有一头母牛,它每年年初生一头小母牛。每头小母牛从第四个年头开始,每年年初也生一头小母牛。是不是有点似曾相识?没错,这道题和斐波那契数列很相似,只不过递增的规律稍微变了一些。
一个输入,一个输出,多组测试用例,输入0结束,这是首先要明确的,所以要用到循环,并且输入0时结束循环。
我们先来分析一下这道题的规律吧。
这里简单地列一个表格:
年份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
母牛数量 | 1 | 2 | 3 | 4 | 6 | 9 | 13 | 19 | 28 |
有没有看出一些端倪?没错,fn=fn-1+fn-3(n>3)。记不记得斐波那契数列的公式?fn=fn-1+fn-2(n>2)。说到这里,想必大家都会做了吧?
注意,这里题目明确要用递归的方法,所以大家尽量还是用递归来做,虽说用数组的方法也能提交。。。
既然是递归,那就离不开三点:找重复、找变化、找边界。
(1)找重复:就是递归时重复操作的部分,详见上面的公式;
(2)找变化:就是递归时参数的变化,上面的公式一起囊括了;
(3)找边界:就是递归脱出的条件,这里很明显是n<=3,因为此时上面的公式不适用了。
写成分段函数的形式就是:
n ,n<=3
f(n)= (没法打大括号,各位将就看)
f(n-1)+f(n-3) ,n>3
注意事项:
(1)注意测试用例是多组,要想办法循环输入并输出;
(2)注意程序运行结束的条件是输入0时结束;
(3)注意递归方法的脱出条件是n<=3;
参考代码:
# include<stdio.h>
int fun(int n)
{
if(n<=3) return n;
else return fun(n-1)+fun(n-3);
}
int main()
{
int n;
while(scanf("%d",&n) && n)
printf("%d\n",fun(n));
return 0;
}
本题来自C语言网:1004
解题思路为转载,来自C语言网的作者 烟火尘霄。