(C语言)[递归]母牛的故事

本文介绍了如何使用递归方法解决一道与斐波那契数列类似的题目——母牛的故事。题目要求根据每年母牛繁殖的情况计算牛的数量,通过分析得出递归公式fn=fn-1+fn-3(n>3),并给出C语言的解题代码。注意点包括多组测试用例处理、递归边界条件及递归函数的实现。
摘要由CSDN通过智能技术生成

原题链接:题目 1004: [递归]母牛的故事

题解:

# include<stdio.h>
 
int fun(int n)
{
    if(n<=3) return n;
    else return fun(n-1)+fun(n-3);
}
int main()
{
    int n;
    while(scanf("%d",&n) && n)
        printf("%d\n",fun(n));
 
    return 0;
}

 分析:

有一头母牛,它每年年初生一头小母牛。每头小母牛从第四个年头开始,每年年初也生一头小母牛。是不是有点似曾相识?没错,这道题和斐波那契数列很相似,只不过递增的规律稍微变了一些。
一个输入,一个输出,多组测试用例,输入0结束,这是首先要明确的,所以要用到循环,并且输入0时结束循环。

我们先来分析一下这道题的规律吧。

这里简单地列一个表格:

年份123456789
母牛数量123469131928

有没有看出一些端倪?没错,fn=fn-1+fn-3(n>3)。记不记得斐波那契数列的公式?fn=fn-1+fn-2(n>2)。说到这里,想必大家都会做了吧?

注意,这里题目明确要用递归的方法,所以大家尽量还是用递归来做,虽说用数组的方法也能提交。。。

既然是递归,那就离不开三点:找重复、找变化、找边界。

(1)找重复:就是递归时重复操作的部分,详见上面的公式;

(2)找变化:就是递归时参数的变化,上面的公式一起囊括了;

(3)找边界:就是递归脱出的条件,这里很明显是n<=3,因为此时上面的公式不适用了。

写成分段函数的形式就是:

                                                    n                    ,n<=3

                                        f(n)=                                            (没法打大括号,各位将就看)

                                                    f(n-1)+f(n-3) ,n>3

注意事项:

(1)注意测试用例是多组,要想办法循环输入并输出;

(2)注意程序运行结束的条件是输入0时结束;

(3)注意递归方法的脱出条件是n<=3;

参考代码:

# include<stdio.h>
 
int fun(int n)
{
    if(n<=3) return n;
    else return fun(n-1)+fun(n-3);
}
int main()
{
    int n;
    while(scanf("%d",&n) && n)
        printf("%d\n",fun(n));
 
    return 0;
}

本题来自C语言网:1004

解题思路为转载,来自C语言网的作者 烟火尘霄

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值