python识别图片验证码,踩坑亲测

一.、环境

centos7.x

python3.x

开始用的python2.x,安装好后运行语法错误....

二、安装依赖包

1. 安装参考连接:https://blog.csdn.net/xavier_muse/article/details/104210452

2. 安装过程中报错解决:

问题1:No module named yum

解决:

    (1) whereis python 查看系统安装python,如果是有多个版本时


    (2)vim /usr/bin/yum,修改第一行 #!/usr/bin/python2.7


还是不行,根据实际情况百度

三、使用示例

上代码,main为入口函数,这个识别算是稍微准确的,也可以试着使用百度云,腾讯云等的文字识别,免费版的感觉不太好用,仅供参考

# -*- coding: utf-8 -*-
import json
import sys
import random
import time
import traceback
import requests
import pytesseract

from datetime import datetime
from PIL import Image


# 获取图片中像素点数量最多的像素
def get_threshold(image):
    pixel_dict = defaultdict(int)

    # 像素及该像素出现次数的字典
    rows, cols = image.size
    for i in range(rows):
        for j in range(cols):
            pixel = image.getpixel((i, j))
            pixel_dict[pixel] += 1

    count_max = max(pixel_dict.values())  # 获取像素出现出多的次数
    pixel_dict_reverse = {v: k for k, v in pixel_dict.items()}
    threshold = pixel_dict_reverse[count_max]  # 获取出现次数最多的像素点

    return threshold

# 按照阈值进行二值化处理
# threshold: 像素阈值
def get_bin_table(threshold):
    # 获取灰度转二值的映射table
    table = []
    for i in range(256):
        rate = 0.1  # 在threshold的适当范围内进行处理
        if threshold * (1 - rate) <= i <= threshold * (1 + rate):
            table.append(1)
        else:
            table.append(0)
    return table

# 去掉二值化处理后的图片中的噪声点
def cut_noise(image):
    rows, cols = image.size  # 图片的宽度和高度
    change_pos = []  # 记录噪声点位置
    # 遍历图片中的每个点,除掉边缘
    for i in range(1, rows - 1):
        for j in range(1, cols - 1):
            # pixel_set用来记录该店附近的黑色像素的数量
            pixel_set = []
            # 取该点的邻域为以该点为中心的九宫格
            for m in range(i - 1, i + 2):
                for n in range(j - 1, j + 2):
                    if image.getpixel((m, n)) != 1:  # 1为白色,0位黑色
                        pixel_set.append(image.getpixel((m, n)))

            # 如果该位置的九宫内的黑色数量小于等于4,则判断为噪声
            if len(pixel_set) <= 4:
                change_pos.append((i, j))
    # 对相应位置进行像素修改,将噪声处的像素置为1(白色)
    for pos in change_pos:
        image.putpixel(pos, 1)

    return image  # 返回修改后的图片

# 识别图片中的数字加字母
# 传入参数为图片路径,返回结果为:识别结果
def OCR_lmj(img_path):
    image = Image.open(img_path)  # 打开图片文件
    imgry = image.convert('L')  # 转化为灰度图

    # 获取图片中的出现次数最多的像素,即为该图片的背景
    max_pixel = get_threshold(imgry)

    # 将图片进行二值化处理
    # 注意,是否使用二值化要看具体情况,有些图片二值化之后,可能关键信息会丢失,反而识别不出来
    table = get_bin_table(threshold=max_pixel)
    out = imgry.point(table, '1')

    # 去掉图片中的噪声(孤立点)
    out = cut_noise(out)

    # 保存图片
    # out.save('E://figures/img_gray.jpg')

    # 仅识别图片中的数字
    # text = pytesseract.image_to_string(out, config='digits')
    # 识别图片中的数字和字母
    text = pytesseract.image_to_string(out)

    # 去掉识别结果中的特殊字符
    exclude_char_list = ' .:\\|\'\"?![],()~@#$%^&*_+-={};<>/¥'
    text = ''.join([x for x in text if x not in exclude_char_list])
    # print(text)

    return text

def main(image_path):
    '''
    单张图片识别
    '''
    recognizition = OCR_lmj(image_path)
    return recognizition

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值