flink实战--flinksql的DDL创建source和sink表

本文详细介绍了如何在Flink中使用DDL语句创建Source和Sink表,涵盖了数据格式依赖、Flink 1.9后的Blink Planner使用、时间属性和水印、DDL语法等多个方面,并通过多个案例展示了创建Kafka、Elasticsearch和Hbase表的步骤。同时,讨论了数据解析失败处理、字段映射和大小写敏感等问题。
摘要由CSDN通过智能技术生成

扫一扫加入大数据公众号和技术交流群,了解更多大数据技术,还有免费资料等你哦

简介

            Flink1.9之后,flinkSQL支持了DDL语句。很方便我们去创建sql语句中需要的数据源表(source)和数据存储表(sink),但是最近看很多人使用flinkSQL的DDL语句还是会遇见各种问题,今天详细总结一下flinkSQL的DDL语句使用步骤。

依赖准备

<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-table-api-java-bridge_2.11</artifactId>
  <versi
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿华田512

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值