flink实战--状态管理(State TTL、Operator state、Keyed state)

本文深入探讨Apache Flink的状态管理,包括State TTL功能,介绍State在hdfs中的存储格式,Keyed States与Operator States的类型及使用,以及State的过期时间TTL配置与清理策略,特别强调了State TTL如何帮助解决实时计算中的状态累积问题。
摘要由CSDN通过智能技术生成

扫一扫加入大数据公众号和技术交流群,了解更多大数据技术,还有免费资料等你哦

简介

             Flink官网的自我介绍:Apache Flink® — Stateful Computations over Data Streams,可以看出状态计算是Flink引以为豪的杀手锏。那什么是带状态的计算呢?简单说计算任务的结果不仅仅依赖于输入,还依赖于它的当前状态。实时计算如果任务失败导致中间状态丢失,将是一个非常可怕的事情。比如实时计算每天的pv,uv等指标,任务掉线后中间状态也丢失了,那只能从凌晨数据重新计算。如果是有状态的计算大可不必担心,从任务掉线的时刻继续计算,妈妈再也不用担心我的任务掉线了。下面介绍一下Flink如何实现状态计算和状态管理。

Flink中的状态管理

按照数据的划分和扩张方式,Flink中大致分为2类:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿华田512

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值