解锁LangChain工具的强大功能:从函数到异步实现

引言

在构建智能代理时,为其提供一系列可用的工具是至关重要的。LangChain作为一个强大的框架,不仅支持从函数创建工具,还允许通过LangChainRunnables和BaseTool子类实现高自由度的工具开发。本文将深入探讨如何使用LangChain创建和配置这些工具,帮助开发者有效扩展其应用的功能。

主要内容

从函数创建工具

创建工具的最简单方法是通过函数。这可以通过使用@tool装饰器实现,它利用函数名作为默认工具名,并采用函数的docstring作为工具描述。如果需要更多定制化,可以通过StructuredTool.from_function类方法进行。

@tool 装饰器

from langchain_core.tools import tool

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers."""
    return a * b

# 检查工具属性
print(multiply.name)
print(multiply.description)
print(multiply.args)

结构化工具

结构化工具提供了更多的配置选项,如同步和异步实现的指定。通过这种方法可以更好地管理工具的输入参数和返回值。

from langchain_core.tools import StructuredTool
from langchain.pydantic_v1 import BaseModel, Field

class CalculatorInput(BaseModel):
    a: int = Field(description="first number")
    b: int = Field(description="second number")

def multiply(a: int, b: int) -> int:
    """Multiply two numbers."""
    return a * b

calculator = StructuredTool.from_function(
    func=multiply,
    name="Calculator",
    description="multiply numbers",
    args_schema=CalculatorInput,
    return_direct=True
)

print(calculator.invoke({"a": 2, "b": 3}))

使用LangChainRunnables

LangChainRunnables可以接受字符串或字典输入,并通过as_tool方法转换为工具。这种方法适用于需要复杂逻辑或多步骤处理的情况。

通过BaseTool子类化

对于需要极高定制化的场景,通过继承BaseTool可以实现。这种方法虽然代码量较多,但提供了最大的控制权。

代码示例

下面是一个完整的代码示例,演示了如何创建同步和异步工具,并处理工具执行中的错误。

from langchain_core.tools import StructuredTool, ToolException

def get_weather(city: str) -> int:
    """Get weather for the given city."""
    raise ToolException(f"Error: There is no city by the name of {city}.")

get_weather_tool = StructuredTool.from_function(
    func=get_weather,
    handle_tool_error=True
)

print(get_weather_tool.invoke({"city": "foobar"}))

常见问题和解决方案

  1. 如何处理工具的执行错误?
    定义错误处理策略,并在工具内抛出ToolException。配置handle_tool_error来决定工具遇到异常时的行为。

  2. 异步工具如何与同步工具配合使用?
    使用StructuredTool.from_function可以同时定义同步和异步方法,避免异步代码中的小额外开销。

  3. 如何在受网络限制的地区使用外部API?
    使用API代理服务,以提高访问的稳定性和响应速度。

总结与进一步学习资源

创建和配置LangChain工具为开发人员提供了强大的功能延展能力,尤其是在处理复杂调用链时。更多关于LangChain工具的使用方法,可以参考以下资源:

  • LangChain官方文档
  • Pydantic数据模型指南
  • Python异步编程最佳实践

参考资料

  • LangChain官方文档:https://www.langchain.com/docs
  • Python Pydantic:https://pydantic-docs.helpmanual.io/
  • Async Programming in Python: https://realpython.com/async-io-python/

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值