本文是在基于python数据分析和kaggle教程的实践基础上记录的pandas使用心得和体会。
0 文章主要针对的数据源,在excel中显示是这个数据

0 excel读取写入-----------------------------------------------------------------------
df=pd.read_csv('data/xxx.csv');
df.to_csv('result.csv', index=False, header=[‘year’,'state']) #默认填写路径即可,如果不想添加索引(就是one two three这个),如果只想输出year和state这两个字段的数据,那么就如代码所示操作。
1 Series
pandas有一种一维数据结构Series,类似字典,但是比字典更为强大。具有索引,具有键值对应关系,能够排序,切片sliece等等操作。
可以在list或dict字典的基础上构建出Series对象。
a=Series([2,1,3,54,3]) #将list转换为Series
b=Series([a:2,b:1,c:3,d:54,e:3]) #将dict转换为Series



2 dataframe
dataframe是pandas一种很重要的数据结构,可以将数据按照excel那样的方式呈现给大家,方便各种操纵。
从csv数据读取出来的dataframe对象df如下所示。

2.1 dataframe元数据的描述-----------------------------------------------------------------------
dataframe有一些能够描述自己的函数,有代码有真相。
df.describe()

df.info()
df.dtypes
本文是关于Pandas的使用心得,介绍了如何用Python的Pandas库进行数据读写、Series和DataFrame的操作,包括数据筛选、类型转换、数据结构构建、索引与排序等,适合数据分析初学者。
最低0.47元/天 解锁文章
1411

被折叠的 条评论
为什么被折叠?



