在自己的两个月实习过程中的学习总结,任务是补全图像。
试了几种比较有名的深度学习方法。后面打算把这些源码及使用说明都整理下放在github上。
(留个空放地址)
edgeconnect网络(2019年的)
先修复轮廓再填充颜色,(人类艺术家的角度看起来合理)
自己的实现效果
网络的效果,其实不是很好。感觉上。
shift-net(2018)
涉及到特征转移的创新点,以及一个guidance-loss
自己实现的效果
效果蛮好的。
pconv-net(2017)
英伟达的2017论文。
创新点就是下面的idea,由外圈往内扩散补全的思想,很合理。
自己体悟。
自己实现的效果
效果也挺好。
pen-net(2019)
论文里给的代码不好调不通。。我太菜了//
附录:
我还试过传统算法,例如基于一块块的补全算法,代码后面再加。还有tv补全算法。
(插个空后面加代码地址)