第五课 其它类型排序算法

python数据结构与算法基础 第五课

tags:

  • python
  • 路飞学院

categories:

  • python
  • 排序算法
  • 希尔排序
  • 计数排序
  • 桶排序
  • 基数排序

第一节 希尔排序

1. 希尔排序介绍

  1. 希尔排序是之前插入排序的变形。
  2. 希尔排序(Shell Sort)是-种分组插入排序算法。
  3. 首先取一个整数d-=n/2, 将元素分为d个组,每组相邻量元素之间距离为d,在各组内进行直接插入排序;
  4. 取第二个整数d2=d/2,重复上述分组排序过程,直到d=1,即所有元素在同- -组内进行直接插入排序。
  5. 希尔排序每趟并不使某些元素有序,而是使整体数据越来越接近有序;最后一趟排序使得所有数据有序。
# 希尔排序,只需要把插入排序拿过来。把出现的1 变为gap即可
def insert_sort_gap(li, gap):
    for i in range(gap, len(li)): # i表示摸到的牌
        temp = li[i]
        j = i - gap # j表示有序区的最后一张牌(手里的牌)
        while j >= 0 and li[j] > temp:
            li[j + gap] = li[j]
            j -= gap
        li[j + gap] = temp


def shell_sort(li):
    d = len(li) // 2
    while d >= 1:
        insert_sort_gap(li, d)
        d //= 2

import random
list = random.sample([i for i in range(1000)], 20)
print(list)
shell_sort(list)
print(list)

2. 希尔排序总结

  1. 希尔排序比插入排序表现好很多(实验证明)
  2. 希尔排序表现比堆排序稍微慢一些(实验证明)
  3. 希尔排序的时间复杂度讨论比较复杂,并且和选取的gap序列有关。
  4. 自己查一下 维基百科。时间复杂度太多了
  5. 希尔排序平均情况下小于nn.现在得出最快的nlogn*logn

第二节 计数排序

1. 计数排序

  1. 对列表进行排序,已知列表中的数范围都在0到100之间。设计一个时间复杂度为O(n)的算法。
2. 系统自带的排序算法:比我们之前学过的都快。因为底层是C语言写的
# 计数排序 已知需要排序的列表元素范围在0-100之间
def count_sort(li, max_count=100):
    count = [0 for _ in range(max_count+1)]
    for val in li:
        count[val] += 1
    li.clear()
    for ind, val in enumerate(count):
        for i in range(val):
            li.append(ind)



import random
list = [random.randint(0,100) for i in range(1000)]
print(list)
count_sort(list)
print(list)

第三节 桶排序

1. 桶排序

  1. 在计数排序中,如果元素的范围比较大(比如在1倒亿之间),如何改造算法?
  2. 桶排序(Bucket Sort):首先将元素分在不同的桶中,在对每个桶中的元素排序。
  3. 然后在出数
    在这里插入图片描述
# 桶排序
def bucket_sort(li, n=100, max_num=10000):
    # 创建桶列表, 桶也是一个列表。所以应该是一个二维列表
    buckets = [[] for _ in range(n)]
    for val in li:
        # 0-99 ->0, 100-199->1
        # 10000->100 我们这只有0-99号桶。所以把10000放到99号桶
        i = min(val // (max_num // n), n-1) # 放到i号桶中
        buckets[i].append(val)
        # 插入后先桶内排序
        for j in range(len(buckets[i])-1, 0, -1):
            # 桶内冒泡排序
            if buckets[i][j] < buckets[i][j-1]:
                buckets[i][j], buckets[i][j-1] = buckets[i][j-1], buckets[i][j]
            else:
                break
    # 输出所有桶内元素
    sorted_li = []
    for buc in buckets:
        sorted_li.extend(buc)
    return sorted_li

import random
list = [random.randint(0, 10000) for i in range(100)]
print(list)
li = bucket_sort(list)
print(li)

2. 桶排序的总结

  1. 桶排序的表现取决于数据的分布。也就是需要对不同数据排序时采取不同的分桶策略。
  2. 平均情况时间复杂度: O(n+k)
  3. 最坏情况时间复杂度: O(n^2*k)
  4. 空间复杂度: O(nk)

第四节 基数排序

1. 基数排序

  1. 多关键字排序:加入现在有一个员工表,要求按照薪资排序,年龄相同的员工按照年龄排序。
  2. 先按照年龄进行排序,再按照薪资进行稳定的排序。
  3. 对32,13,94,52,17,54,93排序, 是否可以看做多关键字排序? 先对个位排序,在对十位排序
  4. 装多次桶,然后出数。桶排序是装一次桶后,排序输出。
# 基数排序算法
def radix_sort(li):
    # 循环次数即位数由最大值确定。
    max_num = max(li)
    it = 0
    while 10 ** it <= max_num:
        # 桶数确定的10个
        buckets = [[] for _ in range(10)]
        # 根据位数。个位十位百位..放入桶中
        for val in li:
            # 987 it=1 987//10->98 98%10->8; it=2 987//100->9 9%10=9
            digit = (val // (10 ** it)) % 10
            buckets[digit].append(val)
        # 分桶完成
        li.clear()
        for buc in buckets:
            # 重新写回li
            li.extend(buc)

        it += 1


import random
list = [random.randint(0, 1000) for i in range(20)]
print(list)
radix_sort(list)
print(li)

2. 基数排序的总结

  1. 时间复杂度: O(kn)
  2. 空间复杂度: 0(k+n)
  3. k表示数字位数
  4. 有可能快排要快的(和数的范围有关)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值