第三课 python进阶自定义序列类
tags:
- Python
- 慕课网
categories:
- 序列类型分类
- bisect
- 自定义可切片对象
文章目录
第一节 序列类分类
- 通过序列存储数据的类型区分:
- 容器序列:list、tuple、deque(队列)
- 扁平序列:str、bytes、bytearray、array.array (数组放置同一种数据类型)
- 通过序列是否可变进行区分:
- 可变序列:list、deque、bytearray、array
- 不可变序列:str、tuple、bytes
- 数组和列表的区别:
- array和list的一个重要区别, array只能存放指定的数据类型
- 因为array在使用的时候要指定元素数据类型,因此它比list和tuple都有比较高效空间性能。
# array, deque
# 数组
from array import array
# array和list的一个重要区别, array只能存放指定的数据类型
# i指定为int f为float d是double...
my_array = array("i", (1, 5, 2, 3))
my_array.append(1)
# my_array.append("abc")
print(my_array)
第二节 序列的abc继承关系
- 查看序列的抽象基类,Lib_collections_abc.py。帮助我们理解这些数据结构的协议的细节。
- from collections import abc
- Sequence(不可变)和MutableSequence(可变序列),因为它里面有setitem和delitem魔法函数所以可变。
- Sequence发现继承了Reversible和Collection(Sized, Iterable, Container),Sized可以用len(), Iterable可以迭代,Container可以使用if in。
- 这里if in首选__contains__,如果没有的话,退一步找__getitem__
第三节 序列的+、+=和extend的区别
- +只能拓展同类型的序列 变成元祖就会报错
- += 实际上调用了__iadd__魔法函数, 它更加灵活.它内部调用了extend方法 可以加任何可迭代类型。看Lib_collections_abc.py下的__iadd__魔法函数。
- extend方法 可以加任何可迭代类型
- append把数组当做一个值 添加到尾部
# +只能拓展同类型的序列 变成元祖就会报错
a = [1, 2]
c = a + [3, 4]
# c = a + (3, 4)
print(c)
# 就地加 改为元祖
# += 实际上调用了__iadd__魔法函数 它内部调用了extend方法 可以加任何可迭代类型
a += [3, 4]
# a += (3, 4)
print(a)
# extend没有返回值
a.extend(range(3))
# append把数组当做一个值 添加到尾部
a.append([1, 2])
print(a)
第四节 切片基础操作
- 模式[start: end: step] 切片操作返回新的列表,不会改变原来的元素
- 第一个数字start表示切片开始位置,默认为0;
- 第二个数字end表示切片截止(但不包含)位置(默认为列表长度);
- 第三个数字step表示切片的步长(默认为1)。
- 当start为0时可以省略,当end为列表长度时可以省略,
- 当step为1时可以省略,并且省略步长时可以同时省略最后一个冒号。
- 另外,当step为负整数时,表示反向切片,这时start应该比end的值要大才行。
# 模式[start:end:step]
"""
其中,第一个数字start表示切片开始位置,默认为0;
第二个数字end表示切片截止(但不包含)位置(默认为列表长度);
第三个数字step表示切片的步长(默认为1)。
当start为0时可以省略,当end为列表长度时可以省略,
当step为1时可以省略,并且省略步长时可以同时省略最后一个冒号。
另外,当step为负整数时,表示反向切片,这时start应该比end的值要大才行。
"""
aList = [3, 4, 5, 6, 7, 9, 11, 13, 15, 17]
print(aList[::]) # 返回包含原列表中所有元素的新列表
print(aList[::-1]) # 返回包含原列表中所有元素的逆序列表
print(aList[::2]) # 隔一个取一个,获取偶数位置的元素
print(aList[1::2]) # 隔一个取一个,获取奇数位置的元素
print(aList[3:6]) # 指定切片的开始和结束位置
print(aList[0:100]) # 切片结束位置大于列表长度时,从列表尾部截断
print(aList[100:]) # 切片开始位置大于列表长度时,返回空列表
aList[len(aList):] = [9] # 在列表尾部增加元素
aList[:0] = [1, 2] # 在列表头部插入元素
aList[3:3] = [4] # 在列表中间位置插入元素
aList[:3] = [1, 2] # 替换列表元素,等号两边的列表长度相等
aList[3:] = [4, 5, 6] # 等号两边的列表长度也可以不相等
aList[::2] = [0] * 3 # 隔一个修改一个 [0, 0, 0]
print(aList)
aList[::2] = ['a', 'b', 'c'] # 隔一个修改一个
print(aList)
# aList[::2] = [1, 2] # 左侧切片不连续,等号两边列表长度必须相等 这里会报异常
aList[:3] = [] # 删除列表中前3个元素
print(aList)
del aList[:3] # 切片元素连续
print(aList)
del aList[::2] # 切片元素不连续,隔一个删一个
print(aList)
第五节 自定义可切片的对象
- 必须实现Sequence里面的下面魔法方法。(这里是不可变切片对象)
- __reversed__、 __getitem__、 __len__、 __iter__、 __contains__
import numbers
class Group:
# 支持切片操作
def __init__(self, group_name, company_name, staffs):
self.group_name = group_name
self.company_name = company_name
self.staffs = staffs
def __reversed__(self):
self.staffs.reverse()
# 切片实现的关键函数
# def __getitem__(self, item):
# return self.staffs[item] # 断点打到这 看下item到底传的什么 item: sLice(None,2, None)
def __getitem__(self, item):
cls = type(self)
# print(cls) # Group
# 这里自定义 切片的返回 结果是一个Group对象 让切片之后还可以在切片
if isinstance(item, slice):
return cls(group_name=self.group_name, company_name=self.company_name, staffs=self.staffs[item])
elif isinstance(item, numbers.Integral):
return cls(group_name=self.group_name, company_name=self.company_name, staffs=[self.staffs[item]])
def __len__(self):
return len(self.staffs)
def __iter__(self):
return iter(self.staffs)
def __contains__(self, item):
if item in self.staffs:
return True
else:
return False
staffs = ["bobby1", "imooc", "bobby2", "bobby3"]
group = Group(company_name="imooc", group_name="user", staffs=staffs)
# 切片的实现要覆盖下面两种情况
# sub_group = group[:2]
# group[0]
reversed(group)
for user in group:
print(user)
第六节 bisect维护已排序序列
- bisect包中有一个insort插入函数,在插入时就维护序列的有序性。使用二分查找算法效率高。
- 维护已排序的序列,尽量用bisect
import bisect
from collections import deque
# 用来处理已排序的序列,用来维持已排序的序列, 升序
# 二分查找
inter_list = []
# inter_list = deque()
bisect.insort(inter_list, 3)
bisect.insort(inter_list, 2)
bisect.insort(inter_list, 5)
bisect.insort(inter_list, 1)
bisect.insort(inter_list, 6)
# insort_left和insort_right 该函数用入处理将会插入重复数值的情况,返回将会插入的位置
bisect.insort_left(inter_list, 1) # 将x插入到列表L中,x存在时插入在左侧
bisect.insort_right(inter_list, 3) # 将x插入到列表L中,x存在时插入在右侧
print(inter_list)
# 在inter_list中查找x,x存在时返回x左侧的位置,x不存在返回应该插入的位置..这是5存在于列表中,返回左侧位置5
print(bisect.bisect_left(inter_list, 5)) # 5
# 在inter_list中查找x,x存在时返回x右侧的位置,x不存在返回应该插入的位置..这是5存在于列表中,返回右侧位置6
print(bisect.bisect_right(inter_list, 5)) # 6
# 学习成绩
print(inter_list)
第七节 列表推导式、生成器表达式、字典推导式
- 列表生成式:能用尽量用, 因为效率高
# 列表生成式 提取1-20之间的奇数
odd_list = [i for i in range(21) if i % 2 == 1]
print(odd_list)
# 生成器表达式 []->()
odd_list1 = (i*i for i in range(21) if i % 2 == 1)
print(odd_list1)
print(type(odd_list1))
# 生成器对象可以通过for循环输出
for i in odd_list1:
print(i)
# 用简介的方式去遍历可迭代对象生成需要格式的列表
int_list = [1, 2, -3, 4, 5]
qu_list = [item if item > 0 else abs(item) for item in int_list]
print(qu_list)
# 笛卡尔积
int_list1 = [1, 2]
int_list2 = [3, 4]
qu_list = [(first, second) for first in int_list1 for second in int_list2]
print(qu_list)
# 字典推导式 反转键值
my_dict = {"bobby1": 22, "bobby2": 11, "bobby3": 12}
reversed_dict = {value: key for key, value in my_dict.items()}
print(reversed_dict)
# 集合推导式
# my_set = set(my_dict.keys()) 虽然也行 但是下面更加灵活
my_set = {key for key, value in my_dict.items()}
print(type(my_set))
print(my_set)
1万+

被折叠的 条评论
为什么被折叠?



