第六课 大数据技术之Fink1.13的实战学习-Table Api和SQL
文章目录
第一节 Fink SQL快速上手
1.1 Fink SQL背景
- 在 Flink 提供的多层级 API 中,核心是 DataStream API,这是我们开发流处理应用的基本途径;底层则是所谓的处理函数(process function),可以访问事件的时间信息、注册定时器、自定义状态,进行有状态的流处理。DataStream API 和处理函数比较通用,有了这些 API,理论上我们就可以实现所有场景的需求了。

- 不过在企业实际应用中,往往会面对大量类似的处理逻辑,所以一般会将底层 API 包装成更加具体的应用级接口。怎样的接口风格最容易让大家接收呢?作为大数据工程师,我们最为熟悉的数据统计方式,当然就是写 SQL 了。
- SQL 是结构化查询语言(Structured Query Language)的缩写,是我们对关系型数据库进行查询和修改的通用编程语言。在关系型数据库中,数据是以表(table)的形式组织起来的,所以也可以认为 SQL 是用来对表进行处理的工具语言。无论是传统架构中进行数据存储的MySQL、PostgreSQL,还是大数据应用中的 Hive,都少不了 SQL 的身影;而 Spark 作为大数据处理引擎,为了更好地支持在 Hive 中的 SQL 查询,也提供了 Spark SQL 作为入口。
- Flink 同样提供了对于“表”处理的支持,这就是更高层级的应用 API,在 Flink 中被称为Table API 和 SQL。Table API 顾名思义,就是基于“表”(Table)的一套 API,它是内嵌在 Java、Scala 等语言中的一种声明式领域特定语言(DSL),也就是专门为处理表而设计的;在此基础上,Flink 还基于 Apache Calcite 实现了对 SQL 的支持。这样一来,我们就可以在 Flink 程序中直接写 SQL 来实现处理需求了。
- 在 Flink 中这两种 API 被集成在一起,SQL 执行的对象也是 Flink 中的表(Table),所以我们一般会认为它们是一体的。Flink 是批流统一的处理框架,无论是批处理(DataSet API)还是流处理(DataStream API),在上层应用中都可以直接使用 Table API 或者 SQL 来实现;这两种 API 对于一张表执行相同的查询操作,得到的结果是完全一样的。
- 需要说明的是,Table API 和 SQL 最初并不完善,在 Flink 1.9 版本合并阿里巴巴内部版本Blink 之后发生了非常大的改变,此后也一直处在快速开发和完善的过程中,直到 Flink 1.12版本才基本上做到了功能上的完善。而即使是在目前最新的 1.13 版本中,Table API 和 SQL 也依然不算稳定,接口用法还在不停调整和更新。所以这部分希望大家重在理解原理和基本用法,具体的 API 调用可以随时关注官网的更新变化。
1.2 Fink SQL快速上手
- 如果我们对关系型数据库和 SQL 非常熟悉,那么 Table API 和 SQL 的使用其实非常简单:只要得到一个“表”(Table),然后对它调用 Table API,或者直接写 SQL 就可以了。接下来我们就以一个非常简单的例子上手,初步了解一下这种高层级 API 的使用方法。
- 我们想要在代码中使用 Table API,必须引入相关的依赖。
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-api-java-bridge_${
scala.binary.version}</artifactId>
<version>${
flink.version}</version>
</dependency>
- 这里的依赖是一个 Java 的“桥接器”(bridge),主要就是负责 Table API 和下层 DataStream
API 的连接支持,按照不同的语言分为 Java 版和 Scala 版。如果我们希望在本地的集成开发环境(IDE)里运行 Table API 和 SQL,还需要引入以下依赖:
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner-blink_${
scala.binary.version}</artifactId>
<version>${
flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_${
scala.binary.version}</artifactId>
<version>${
flink.version}</version>
</dependency>
- 这里主要添加的依赖是一个“计划器”(planner),它是 Table API 的核心组件,负责提供运行时环境,并生成程序的执行计划。这里我们用到的是新版的 blink planner。由于 Flink 安装包的 lib 目录下会自带 planner,所以在生产集群环境中提交的作业不需要打包这个依赖。
- 而在 Table API 的内部实现上,部分相关的代码是用 Scala 实现的,所以还需要额外添加一个 Scala 版流处理的相关依赖。另外,如果想实现自定义的数据格式来做序列化,可以引入下面的依赖:
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-common</artifactId>
<version>${
flink.version}</version>
</dependency>
- 有了基本的依赖,接下来我们就可以尝试在 Flink 代码中使用 Table API 和 SQL 了。比如,我们可以自定义一些 Event 类型(包含了 user、url 和 timestamp 三个字段,之前的用户访问事件,作为输入的数据源;而后从中提取 url 地址和用户名 user 两个字段作为输出。
- 如果使用 DataStream API,我们可以直接读取数据源后,用一个简单转换算子 map 来做字段的提取。而这个需求直接写 SQL 的话,实现会更加简单:select url, user from EventTable;这里我们把流中所有数据组成的表叫作 EventTable。在 Flink 代码中直接对这个表执行上面的 SQL,就可以得到想要提取的数据了。在代码中具体实现如下:
import com.atguigu.chapter05.Event;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import static org.apache.flink.table.api.Expressions.$;
public class SimpleTableExample {
public static void main(String[] args) throws Exception {
// 获取流执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// 1. 读取数据源
SingleOutputStreamOperator<Event> eventStream = env
.fromElements(
new Event("Alice", "./home", 1000L),
new Event("Bob", "./cart", 1000L),
new Event("Alice", "./prod?id=1", 5 * 1000L),
new Event("Cary", "./home", 60 * 1000L),
new Event("Bob", "./prod?id=3", 90 * 1000L),
new Event("Alice", "./prod?id=7", 105 * 1000L)
);
// 2. 获取表环境
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
// 3. 将数据流转换成表
Table eventTable = tableEnv.fromDataStream(eventStream);
// 4. 用执行SQL 的方式提取数据 关键字需要反引号`timestamp`
Table resultTable1 = tableEnv.sqlQuery("select url, user, `timestamp` from " + eventTable);
// 5. 基于Table直接转换
Table resultTable2 = eventTable.select($("user"), $("url"))
.where($("user").isEqual("Alice"));
// 6. 将表转换成数据流,打印输出
tableEnv.toDataStream(resultTable1).print("result1");
tableEnv.toDataStream(resultTable2).print("result2");
// 执行程序
env.execute();
}
}
- 这里我们需要创建一个“表环境”(TableEnvironment),然后将数据流(DataStream)转换成一个表(Table);之后就可以执行 SQL 在这个表中查询数据了。查询得到的结果依然是一个表,把它重新转换成流就可以打印输出了。
- 代码执行的结果如下:
+I[./home, Alice]
+I[./cart, Bob]
+I[./prod?id=1, Alice]
+I[./home, Cary]
+I[./prod?id=3, Bob]
+I[./prod?id=7, Alice]
可以看到,我们将原始的 Event 数据转换成了(url,user)这样类似二元组的类型。每行输出前面有一个“+I”标志,这是表示每条数据都是“插入”(Insert)到表中的新增数据。
10. Table 是 Table API 中的核心接口类,对应着我们熟悉的“表”的概念。基于 Table 我们也可以调用一系列查询方法直接进行转换,这就是所谓 Table API 的处理方式:
// 用 Table API 方式提取数据
Table clickTable2 = eventTable.select($("url"), $("user"));
- 这里的$符号是 Table API 中定义的“表达式”类 Expressions 中的一个方法,传入一个字段名称,就可以指代数据中对应字段。将得到的表转换成流打印输出,会发现结果与直接执行SQL 完全一样。
第二节 基本API
2.1 程序架构
- 在 Flink 中,Table API 和 SQL 可以看作联结在一起的一套 API,这套 API 的核心概念就是“表”(Table)。在我们的程序中,输入数据可以定义成一张表;然后对这张表进行查询,就可以得到新的表,这相当于就是流数据的转换操作;最后还可以定义一张用于输出的表,负责将处理结果写入到外部系统。
- 我们可以看到,程序的整体处理流程与 DataStream API 非常相似,也可以分为读取数据源(Source)、转换(Transform)、输出数据(Sink)三部分;只不过这里的输入输出操作不需要额外定义,只需要将用于输入和输出的表定义出来,然后进行转换查询就可以了。程序基本架构如下:
// 创建表环境
TableEnvironment tableEnv = ...;
// 创建输入表,连接外部系统读取数据
tableEnv.executeSql("CREATE TEMPORARY TABLE inputTable ... WITH ( 'connector' = ... )");
// 注册一个表,连接到外部系统,用于输出
tableEnv.executeSql("CREATE TEMPORARY TABLE outputTable ... WITH ( 'connector' = ... )");
// 执行 SQL 对表进行查询转换,得到一个新的表
Table table1 = tableEnv.sqlQuery("SELECT ... FROM inputTable... ");
// 使用 Table API 对表进行查询转换,得到一个新的表
Table table2 = tableEnv.from("inputTable").select(...);
// 将得到的结果写入输出表
TableResult tableResult = table1.executeInsert("outputTable");
- 这里不是从一个 DataStream 转换成 Table,而是通过执行 DDL 来直接创建一个表。这里执行的 CREATE 语句中用 WITH 指定了外部系统的连接器,于是就可以连接外部系统读取数据了。这其实是更加一般化的程序架构,因为这样我们就可以完全抛开DataStream API,直接用 SQL 语句实现全部的流处理过程。
- 而后面对于输出表的定义是完全一样的。可以发现,在创建表的过程中,其实并不区分“输入”还是“输出”,只需要将这个表“注册”进来、连接到外部系统就可以了;这里的 inputTable、outputTable 只是注册的表名,并不代表处理逻辑,可以随意更换。至于表的具体作用,则要等到执行后面的查询转换操作时才能明确。我们直接从 inputTable 中查询数据,那么 inputTable就是输入表;而 outputTable 会接收另外表的结果进行写入,那么就是输出表。
- 在早期的版本中,有专门的用于输入输出的 TableSource 和 TableSink,这与流处理里的概念是一一对应的;不过这种方式与关系型表和 SQL 的使用习惯不符,所以已被弃用,不再区分 Source 和 Sink。
2.2 创建表环境
- 对于 Flink 这样的流处理框架来说,数据流和表在结构上还是有所区别的。所以使用 Table API 和 SQL 需要一个特别的运行时环境,这就是所谓的“表环境”(TableEnvironment)。它主要负责:
- 注册 Catalog 和表;
- 执行 SQL 查询;
- 注册用户自定义函数(UDF);
- DataStream 和表之间的转换。
- 这里的 Catalog 就是“目录”,与标准 SQL 中的概念是一致的,主要用来管理所有数据库(database)和表(table)的元数据(metadata)。通过 Catalog 可以方便地对数据库和表进行查询的管理,所以可以认为我们所定义的表都会“挂靠”在某个目录下,这样就可以快速检索。在表环境中可以由用户自定义 Catalog,并在其中注册表和自定义函数(UDF)。默认的 Catalog就叫作 default_catalog。
- 每个表和 SQL 的执行,都必须绑定在一个表环境(TableEnvironment)中。TableEnvironment是 Table API 中提供的基本接口类,可以通过调用静态的 create()方法来创建一个表环境实例。方法需要传入一个环境的配置参数 EnvironmentSettings,它可以指定当前表环境的执行模式和计划器(planner)。执行模式有批处理和流处理两种选择,默认是流处理模式;计划器默认使用 blink planner。
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.TableEnvironment;
EnvironmentSettings settings = EnvironmentSettings
.newInstance()
.inStreamingMode() // 使用流处理模式.build();
TableEnvironment tableEnv = TableEnvironment.create(settings);
- 对于流处理场景,其实默认配置就完全够用了。所以我们也可以用另一种更加简单的方式
来创建表环境:
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
- 这 里 我 们 引 入 了 一 个 “ 流 式 表 环 境 ”( StreamTableEnvironment ), 它 是 继 承 自TableEnvironment 的子接口。调用它的 create() 方法,只需要直接将当前的流执行环境(StreamExecutionEnvironment)传入,就可以创建出对应的流式表环境了。
2.3 创建表
- 表(Table)是我们非常熟悉的一个概念,它是关系型数据库中数据存储的基本形式,也是 SQL 执行的基本对象。Flink 中的表概念也并不特殊,是由多个“行”数据构成的,每个行(Row)又可以有定义好的多个列(Column)字段;整体来看,表就是固定类型的数据组成的二维矩阵。
- 为了方便地查询表,表环境中会维护一个目录(Catalog)和表的对应关系。所以表都是通过 Catalog 来进行注册创建的。表在环境中有一个唯一的 ID,由三部分组成:目录(catalog)名,数据库(database)名,以及表名。在默认情况下,目录名为 default_catalog,数据库名为default_database。所以如果我们直接创建一个叫作 MyTable 的表,它的 ID 就是:default_catalog.default_database.MyTable
- 具体创建表的方式,有通过连接器(connector)和虚拟表(virtual tables)两种。
- 连接器表(Connector Tables)。最直观的创建表的方式,就是通过连接器(connector)连接到一个外部系统,然后定义出对应的表结构。例如我们可以连接到 Kafka 或者文件系统,将存储在这些外部系统的数据以“表”的形式定义出来,这样对表的读写就可以通过连接器转换成对外部系统的读写了。当我们在表环境中读取这张表,连接器就会从外部系统读取数据并进行转换;而当我们向这张表写入数据,连接器就会将数据输出(Sink)到外部系统中。
- 在代码中,我们可以调用表环境的 executeSql()方法,可以传入一个 DDL 作为参数执行SQL 操作。这里我们传入一个 CREATE 语句进行表的创建,并通过 WITH 关键字指定连接到外部系统的连接器:
tableEnv.executeSql("CREATE [TEMPORARY] TABLE MyTable ... WITH ( 'connector' = ... )");
- 这里的 TEMPORARY 关键字可以省略。关于连接器的具体定义。这里没有定义Catalog和Database , 所以都是默认的 , 表的完整ID就 是default_catalog.default_database.MyTable。如果希望使用自定义的目录名和库名,可以在环境中进行设置:
tEnv.useCatalog("custom_catalog");
tEnv.useDatabase("custom_database");
- 这样我们创建的表完整 ID 就变成了 custom_catalog.custom_database.MyTable。之后在表环境中创建的所有表,ID 也会都以 custom_catalog.custom_database 作为前缀。
- 虚拟表(Virtual Tables)。在环境中注册之后,我们就可以在 SQL 中直接使用这张表进行查询转换了。
Table newTable = tableEnv.sqlQuery("SELECT ... FROM MyTable... ");
- 这里调用了表环境的 sqlQuery()方法,直接传入一条 SQL 语句作为参数执行查询,得到的结果是一个 Table 对象。Table 是 Table API 中提供的核心接口类,就代表了一个 Java 中定义的表实例。得到的 newTable 是一个中间转换结果,如果之后又希望直接使用这个表执行 SQL,又该怎么做呢?由于 newTable 是一个 Table 对象,并没有在表环境中注册;所以我们还需要将这个中间结果表注册到环境中,才能在 SQL 中使用:tableEnv.createTemporaryView(“NewTable”, newTable);
- 我们发现,这里的注册其实是创建了一个“虚拟表”(Virtual Table)。这个概念与 SQL 语法中的视图(View)非常类似,所以调用的方法也叫作创建“虚拟视图”createTemporaryView)。视图之所以是“虚拟”的,是因为我们并不会直接保存这个表的内容,并没有“实体”;只是在用到这张表的时候,会将它对应的查询语句嵌入到 SQL 中。
- 注册为虚拟表之后,我们就又可以在 SQL 中直接使用 NewTable 进行查询转换了。不难看到,通过虚拟表可以非常方便地让 SQL 分步骤执行得到中间结果,这为代码编写提供了很大的便利。另外,虚拟表也可以让我们在 Table API 和 SQL 之间进行自由切换。一个 Java 中的 Table对象可以直接调用 Table API 中定义好的查询转换方法,得到一个中间结果表;这跟对注册好的表直接执行 SQL 结果是一样的。
2.4 表的查询
- 创建好了表,接下来自然就是对表进行查询转换了。对一个表的查询(Query)操作,就对应着流数据的转换(Transform)处理。Flink 为我们提供了两种查询方式:SQL 和 Table API。
- 执行 SQL 进行查询。基于表执行 SQL 语句,是我们最为熟悉的查询方式。Flink 基于 Apache Calcite 来提供对SQL 的支持,Calcite 是一个为不同的计算平台提供标准 SQL 查询的底层工具,很多大数据框架比如 Apache Hive、Apache Kylin 中的 SQL 支持都是通过集成 Calcite 来实现的。
- 在代码中,我们只要调用表环境的 sqlQuery()方法,传入一个字符串形式的 SQL 查询语句
就可以了。执行得到的结果,是一个 Table 对象。
// 创建表环境
TableEnvironment tableEnv = ...;
// 创建表
tableEnv.executeSql("CREATE TABLE EventTable ... WITH ( 'connector' = ... )");
// 查询用户 Alice 的点击事件,并提取表中前两个字段Table aliceVisitTable = tableEnv.sqlQuery(
"SELECT user, url " + "FROM EventTable " + "WHERE user = 'Alice' "
);
- 目前 Flink 支持标准 SQL 中的绝大部分用法,并提供了丰富的计算函数。这样我们就可以把已有的技术迁移过来,像在 MySQL、Hive 中那样直接通过编写 SQL 实现自己的处理需求,从而大大降低了 Flink 上手的难度。
- 例如,我们也可以通过 GROUP BY 关键字定义分组聚合,调用 COUNT()、SUM()这样的函数来进行统计计算:
Table urlCountTable = tableEnv.sqlQuery(
"SELECT user, COUNT(url) " + "FROM EventTable " +
"GROUP BY user " );
- 上面的例子得到的是一个新的 Table 对象,我们可以再次将它注册为虚拟表继续在 SQL中调用。另外,我们也可以直接将查询的结果写入到已经注册的表中,这需要调用表环境的executeSql()方法来执行 DDL,传入的是一个 INSERT 语句:
// 注册表
tableEnv.executeSql("CREATE TABLE EventTable ... WITH ( 'connector' = ... )"); tableEnv.executeSql("CREATE TABLE OutputTable ... WITH ( 'connector' = ... )");
// 将查询结果输出到 OutputTable 中tableEnv.executeSql (
"INSERT INTO OutputTable " + "SELECT user, url " + "FROM EventTable " + "WHERE user = 'Alice' "
);
- 调用 Table API 进行查询。另外一种查询方式就是调用 Table API。这是嵌入在 Java 和 Scala 语言内的查询 API,核心就是 Table 接口类,通过一步步链式调用 Table 的方法,就可以定义出所有的查询转换操作。每一步方法调用的返回结果,都是一个 Table。
- 由于Table API 是基于Table 的Java 实例进行调用的,因此我们首先要得到表的Java 对象。基于环境中已注册的表,可以通过表环境的 from()方法非常容易地得到一个 Table 对象:
Table eventTable = tableEnv.from("EventTable"); - 传入的参数就是注册好的表名。注意这里 eventTable 是一个 Table 对象,而 EventTable 是在环境中注册的表名。得到 Table 对象之后,就可以调用 API 进行各种转换操作了,得到的是一个新的 Table 对象:
Table maryClickTable = eventTable
.where($("user").isEqual("Alice"))
.select($("url"), $("user"));
- 这里每个方法的参数都是一个“表达式”(Expression),用方法调用的形式直观地说明了想要表达的内容;“$”符号用来指定表中的一个字段。上面的代码和直接执行 SQL 是等效的。
- Table API 是嵌入编程语言中的 DSL,SQL 中的很多特性和功能必须要有对应的实现才可以使用,因此跟直接写 SQL 比起来肯定就要麻烦一些。目前 Table API 支持的功能相对更少,可以预见未来 Flink 社区也会以扩展 SQL 为主,为大家提供更加通用的接口方式;所以我们接下来也会以介绍 SQL 为主,简略地提及 Table API。
- 两种 API 的结合使用。可以发现,无论是调用 Table API 还是执行 SQL,得到的结果都是一个 Table 对象;所以这两种 API 的查询可以很方便地结合在一起。
- 无论是那种方式得到的 Table 对象,都可以继续调用 Table API 进行查询转换;
- 如果想要对一个表执行 SQL 操作(用 FROM 关键字引用),必须先在环境中对它进行注册。所以我们可以通过创建虚拟表的方式实现两者的转换:
tableEnv.createTemporaryView("MyTable", myTable);
- 注意:这里的第一个参数"MyTable"是注册的表名,而第二个参数 myTable 是 Java 中的
Table 对象。 - 这其实是一种简略的写法,我们将 Table 对象名 eventTable 直接以字符串拼接的形式添加到 SQL 语句中,在解析时会自动注册一个同名的虚拟表到环境中,这样就省略了创建虚拟视图的步骤。
// 我们并没有将 Table 对象注册为虚拟表就直接在 SQL 中使用了:
Table clickTable = tableEnvironment.sqlQuery("select url, user from " + eventTable);
- 两种 API 殊途同归,实际应用中可以按照自己的习惯任意选择。不过由于结合使用容易引起混淆,而 Table API 功能相对较少、通用性较差,所以企业项目中往往会直接选择 SQL 的方式来实现需求。
2.5 输出表
- 表的创建和查询,就对应着流处理中的读取数据源(Source)和转换(Transform);而最后一个步骤 Sink,也就是将结果数据输出到外部系统,就对应着表的输出操作。
- 在代码上,输出一张表最直接的方法,就是调用 Table 的方法 executeInsert()方法将一个Table 写入到注册过的表中,方法传入的参数就是注册的表名。
// 注册表,用于输出数据到外部系统
tableEnv.executeSql("CREATE TABLE OutputTable ... WITH ( 'connector' = ... )");
// 经过查询转换,得到结果表
Table result = ...
// 将结果表写入已注册的输出表中
result.executeInsert("OutputTable");
- 在底层,表的输出是通过将数据写入到 TableSink 来实现的。TableSink 是 Table API 中提供的一个向外部系统写入数据的通用接口,可以支持不同的文件格式(比如 CSV、Parquet)、存储数据库(比如 JDBC、HBase、Elasticsearch)和消息队列(比如 Kafka)。它有些类似于DataStream API 中调用 addSink()方法时传入的 SinkFunction,有不同的连接器对它进行了实现。关于不同外部系统的连接器。
- 这里可以发现,我们在环境中注册的“表”,其实在写入数据的时候就对应着一个 TableSink。
2.6 表和流的转换
- 从创建表环境开始,历经表的创建、查询转换和输出,我们已经可以使用 Table API 和 SQL进行完整的流处理了。不过在应用的开发过程中,我们测试业务逻辑一般不会直接将结果直接写入到外部系统,而是在本地控制台打印输出。对于 DataStream 这非常容易,直接调用 print()方法就可以看到结果数据流的内容了;但对于 Table 就比较悲剧——它没有提供 print()方法。这该怎么办呢?
- 在 Flink 中我们可以将 Table 再转换成 DataStream,然后进行打印输出。这就涉及了表和流的转换。
2.6.1 将表Table转换成流DataStream
- 调用 toDataStream()方法将一个 Table 对象转换成DataStream 非常简单,只要直接调用表环境的方法 toDataStream()就可以了。这里需要将要转换的 Table 对象作为参数传入。
Table aliceVisitTable = tableEnv.sqlQuery(
"SELECT user, url " + "FROM EventTable " + "WHERE user = 'Alice' "
);
// 将表转换成数据流
tableEnv.toDataStream(aliceVisitTable).print();
- 调用 toChangelogStream()方法。将 maryClickTable 转换成流打印输出是很简单的;然而,如果我们同样希望将“用户点击次数统计”表 urlCountTable 进行打印输出,就会抛出一个TableException 异常:
Exception in thread "main" org.apache.flink.table.api.TableException: Table sink 'default_catalog.default_database.Unregistered_DataStream_Sink_1' doesn't support consuming update changes ...
- 这表示当前的 TableSink 并不支持表的更新(update)操作。这是什么意思呢?因为 print 本身也可以看作一个 Sink 操作,所以这个异常就是说打印输出的 Sink 操作不支持对数据进行更新。具体来说,urlCountTable 这个表中进行了分组聚合统计,所以表中的每一行是会“更新”的。也就是说,Alice 的第一个点击事件到来,表中会有一行(Alice, 1);第二个点击事件到来,这一行就要更新为(Alice, 2)。但之前的(Alice, 1)已经打印输出了,“覆水难收”,我们怎么能对它进行更改呢?所以就会抛出异常。
- 解决的思路是,对于这样有更新操作的表,我们不要试图直接把它转换成 DataStream 打印输出,而是记录一下它的“更新日志”(change log)。这样一来,对于表的所有更新操作,就变成了一条更新日志的流,我们就可以转换成流打印输出了。代码中需要调用的是表环境的toChangelogStream()方法:
Table urlCountTable = tableEnv.sqlQuery(
"SELECT user, COUNT(url) " + "FROM EventTable " +
"GROUP BY user " );
// 将表转换成更新日志流
tableEnv.toDataStream(urlCountTable).print();
- 与“更新日志流”(Changelog Streams)对应的,是那些只做了简单转换、没有进行聚合统计的表,例如前面提到的 maryClickTable。它们的特点是数据只会插入、不会更新,所以也被叫作“仅插入流”(Insert-Only Streams)。
2.6.1 将流DataStream转换成表Table
- 调用 fromDataStream()方法,想要将一个 DataStream 转换成表也很简单,可以通过调用表环境的 fromDataStream()方法来实现,返回的就是一个 Table 对象。例如,我们可以直接将事件流 eventStream 转换成一个表:
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 获取表环境
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
// 读取数据源
SingleOutputStreamOperator<Event> eventStream = env.addSource(...)
// 将数据流转换成表
Table eventTable = tableEnv.fromDataStream(eventStream);
- 由于流中的数据本身就是定义好的 POJO 类型 Event,所以我们将流转换成表之后,每一行数据就对应着一个 Event,而表中的列名就对应着 Event 中的属性。另外,我们还可以在fromDataStream()方法中增加参数,用来指定提取哪些属性作为表中的字段名,并可以任意指定位置:
// 提取 Event 中的 timestamp 和 url 作为表中的列
Table eventTable2 = tableEnv.fromDataStream(eventStream, $("timestamp"),
$("url"));
- 需要注意的是,timestamp 本身是 SQL 中的关键字,所以我们在定义表名、列名时要尽量
避免。这时可以通过表达式的 as()方法对字段进行重命名:
// 将 timestamp 字段重命名为 ts
Table eventTable2 = tableEnv.fromDataStream(eventStream, $("timestamp").as("ts"),
$("url"));
- 调用 createTemporaryView()方法。调用 fromDataStream()方法简单直观,可以直接实现 DataStream 到 Table 的转换;不过如果我们希望直接在 SQL 中引用这张表,就还需要调用表环境的 createTemporaryView()方法来创建虚拟视图了。
- 对于这种场景,也有一种更简洁的调用方式。我们可以直接调用 createTemporaryView()方法创建虚拟表,传入的两个参数,第一个依然是注册的表名,而第二个可以直接就是DataStream。之后仍旧可以传入多个参数,用来指定表中的字段
tableEnv.createTemporaryView("EventTable", eventStream, $("timestamp").as("ts"),$("url"));这样,我们接下来就可以直接在 SQL 中引用表 EventTable 了。 - 调用 fromChangelogStream ()方法表环境还提供了一个方法 fromChangelogStream(),可以将一个更新日志流转换成表。这个方法要求流中的数据类型只能是 Row,而且每一个数据都需要指定当前行的更新类型(RowKind);所以一般是由连接器帮我们实现的,直接应用比较少见,感兴趣的读者可以查看官网的文档说明。
2.6.3 支持的数据类型
- 前面示例中的 DataStream,流中的数据类型都是定义好的 POJO 类。如果 DataStream 中的类型是简单的基本类型,还可以直接转换成表吗?这就涉及了 Table 中支持的数据类型。
- 整体来看,DataStream 中支持的数据类型,Table 中也是都支持的,只不过在进行转换时需要注意一些细节。
- 原子类型。在 Flink 中,基础数据类型(Integer、Double、String)和通用数据类型(也就是不可再拆分的数据类型)统一称作“原子类型”。原子类型的 DataStream,转换之后就成了只有一列的Table,列字段(field)的数据类型可以由原子类型推断出。另外,还可以在fromDataStream()方法里增加参数,用来重新命名列字段。
StreamTableEnvironment tableEnv = ...;
DataStream<Long> stream = ...;
// 将数据流转换成动态表,动态表只有一个字段,重命名为 myLong
Table table = tableEnv.fromDataStream(stream, $("myLong"));
- Tuple 类型。当原子类型不做重命名时,默认的字段名就是“f0”,容易想到,这其实就是将原子类型看作了一元组 Tuple1 的处理结果。Table 支持 Flink 中定义的元组类型 Tuple,对应在表中字段名默认就是元组中元素的属性名 f0、f1、f2…。所有字段都可以被重新排序,也可以提取其中的一部分字段。字段还可以通过调用表达式的 as()方法来进行重命名。
StreamTableEnvironment tableEnv = ...;
DataStream<Tuple2<Long, Integer>> stream = ...;
// 将数据流转换成只包含 f1 字段的表
Table table = tableEnv.fromDataStream(stream, $("f1"));
// 将数据流转换成包含 f0 和 f1 字段的表,在表中 f0 和 f1 位置交换
Table table = tableEnv.fromDataStream(stream, $("f1"), $("f0"));
// 将 f1 字段命名为 myInt,f0 命名为 myLong
Table table = tableEnv.fromDataStream(stream, $("f1").as("myInt"),
$("f0").as("myLong"))

最低0.47元/天 解锁文章
2210

被折叠的 条评论
为什么被折叠?



