标题 | 详情 |
---|---|
作者简介 | 愚公搬代码 |
头衔 | 华为云特约编辑,华为云云享专家,华为开发者专家,华为产品云测专家,CSDN博客专家,CSDN商业化专家,阿里云专家博主,阿里云签约作者,腾讯云优秀博主,腾讯云内容共创官,掘金优秀博主,亚马逊技领云博主,51CTO博客专家等。 |
近期荣誉 | 2022年度博客之星TOP2,2023年度博客之星TOP2,2022年华为云十佳博主,2023年华为云十佳博主,2024年华为云十佳博主等。 |
博客内容 | .NET、Java、Python、Go、Node、前端、IOS、Android、鸿蒙、Linux、物联网、网络安全、大数据、人工智能、U3D游戏、小程序等相关领域知识。 |
欢迎 | 👍点赞、✍评论、⭐收藏 |
🚀前言
经过数十年的发展,建模和模拟已成为工程和科学的基石。人们针对改进建模的计算方法进行了大量的研究和开发工作。这些计算机模型对系统设计非常有用,可以削减实验和测试的高昂成本。然而在实操中,还需要跟踪系统随时间的演变情况,以便进行诊断、预报和寿命管理。系统的退化模型与系统传感器的数据结合可支持构建对物理系统进行实时跟踪的数字孪生系统。数字孪生系统是物理孪生系统位于云计算中的自适应计算机模型。
本书采用弹簧-质量-阻尼系统的物理孪生模型介绍数字孪生,这是一种大多数工程师和科学家都能上手的物理系统数学模型。学习数字孪生技术要求理解机械/航空航天工程、电气和通信工程,以及计算机科学领域的知识。本书介绍了这些建模和计算方法的背景。作者力求以大学机械/航空航天工程专业三年级学生和计算机科学/电气工程专业三年级学生都能读懂的方式介绍这些材料。这种写作方法确保本书适合大多数工程师和科学家,以及具有相关技术背景的专业人员和管理人员。
本书首先介绍实现数字孪生所需的计算和工程背景,其中包括传感器、执行器、物联网、云计算、估算算法、高性能计算、无线通信和区块链等助推数字孪生实现成为可能的概念;接着借用大量文献中的案例研究阐释这些概念;在多个章节提供了有关动态系统建模、电气类比、概率和统计、不确定性建模与量化,以及系统可靠性和鲁棒性的资料;通过一个动态系统的案例研究说明数字孪生的概念;然后回顾了代理模型,并使用高斯过程方法开发了基于代理模型的数字孪生系统。
🚀一、AI数字孪生建模与计算
本文送出的书籍是这本:
🔎1.内容简介
物理系统的数字孪生是一种自适应的计算机模拟,存在于云端,能动态地适应物理系统的变化。为帮助你理解和掌握数字孪生概念,本书呈现相关的计算、数学和工程背景,介绍开发下一代数字孪生所需的建模/模拟、计算技术、传感器/执行器等知识,还讲解云计算、大数据、物联网、无线通信、高性能计算和区块链等概念。
主要内容
● 提供关于数字孪生技术的背景材料
● 讲述数字孪生的计算方面
● 介绍基于物理和代理模型的表示方法
● 解决测量和建模中的不确定性问题
● 列举实际的数字孪生案例,涉及增材制造过程、服务器集群、预测性维护和智能城市等领域
🔎2.作者简介
Ranjan Ganguli 博士目前是美国凤凰城Viasat 公司的高级研究工程师。他于1989年获得印度理工学院航空航天工程专业的理工学士学位,1991 年和1994 年分别获得美国马里兰大学帕克分校航空航天工程系的硕士和博士学位;2000 年至2021 年,担任印度科学学院航空航天工程系教授;1998 年至2000 年,就职于普惠公司,利用机器学习进行发动机诊断。他曾为波音、普惠、霍尼韦尔、HAL 等公司完成赞助研究项目,有多个研究成果发表在权威期刊上。他著有《等谱振动系统》《燃气轮机诊断》和《工程优化》等书,是美国机械工程师协会会员、美国航空航天学会副研究员、电气与电子工程师协会高级会员及印度国家工程院院士;分别于2007 年和2011 年获得亚历山大 • 冯 • 洪堡奖学金和富布赖特奖学金;曾在德国、法国和韩国担任访问科学家。
Sondipon Adhikari 教授现任格拉斯哥大学詹姆斯 • 瓦特工程学院工程力学教授。他曾作为贾瓦哈拉尔 • 尼赫鲁学者在剑桥大学三一学院获得博士学位,获颁英国皇家学会(英国科学院)著名的沃尔夫森研究功绩奖,曾是工程与物理科学研究委员会(EPSRC)高级研究员和菲利普 • 勒弗胡尔姆工程奖(Philip Leverhulme Award inEngineering)获得者,也曾担任斯旺西大学工程学院首任航空航天工程教席教授。在此之前,他还曾担任布里斯托尔大学讲师和剑桥大学菲茨威廉学院初级研究员,是里昂中央理工学院、莱斯大学、巴黎大学、UT Austin 和IIT Kanpur 的客座教授,以及洛斯阿拉莫斯国家实验室的访问科学家。
Adhikari 教授的研究涉及多个学科,包括动态系统的不确定性量化、计算纳米力学、复杂系统动力学、线性和非线性动力学逆问题,以及振动能量采集。他在这些领域已出版5 本专著,发表350 多篇国际期刊论文和200 多篇会议论文。Adhikari 教授是英国皇家航空学会研究员、美国航空航天学会(AIAA)副研究员和美国航空航天学会非确定性方法技术委员会(NDA-TC)成员,也是Advances in Aircraft and Spacecraft Science、Probabilistic Engineering Mechanics、Computer and Structures、Journal of Sound and Vibration 等多家期刊的编委会成员。
Souvik Chakraborty 博士目前在印度理工学院应用力学系担任助理教授,并在印度理工学院亚迪人工智能学院担任联合教职。Chakraborty 博士的研究涉及科学机器学习(SciML)、随机力学、不确定性量化、可靠性分析、不确定性下的设计和贝叶斯统计等多个领域,他已在同行评审期刊上发表了超过55 篇文章。Chakraborty 博士于2017年获得印度理工学院Roorkee 分校博士学位。2020 年加入印度理工学院之前,他曾于2017 年至2019 年在美国圣母大学和加拿大英属哥伦比亚大学担任博士后研究员。
Mrittika Ganguli 是NEXOCTO 英特尔网络和边缘架构团队的首席工程师兼云原生寻路总监。她在云硬件和软件管理、网络和存储处理控制、数据平面、云协调、遥测QOS 和调度架构方面拥有25 年以上的经验。她积极参与CNCF 和Open Infra 开源计划,并发起了名为Meshmark 的SMP 指数。她拥有计算机科学硕士学位,在该领域拥有70 多项专利并发表多篇IEEE 论文。
🔎3.产品特色
🔎4.目录
第1 章 引言和背景 1
1.1 引言 1
1.2 建模与模拟 3
1.3 传感器和执行器 6
1.4 信号处理 8
1.5 估算算法 10
1.6 工业4.0 12
1.7 应用 13
1.7.1 维护 13
1.7.2 制造业 16
1.7.3 智慧城市 17
第2 章 计算与数字孪生 19
2.1 数字孪生用例和物联网 20
2.2 边缘计算 21
2.3 电信和5G 23
2.4 云 24
2.4.1 微软Azure 25
2.4.2 亚马逊AWS 26
2.5 大数据 27
2.6 谷歌TensorFlow 28
2.7 区块链与数字孪生 30
第3 章 动态系统 33
3.1 单自由度无阻尼系统 33
3.1.1 固有频率 34
3.1.2 动态响应 34
3.2 单自由度黏性阻尼系统 36
3.2.1 固有频率 37
3.2.2 动态响应 38
3.3 多自由度无阻尼系统 43
3.3.1 模态分析 43
3.3.2 动态响应 46
3.4 比例阻尼系统 49
3.4.1 比例阻尼的条件 50
3.4.2 广义比例阻尼 51
3.4.3 动态响应 54
3.5 非比例阻尼系统 71
3.5.1 自由振动和复模态 71
3.5.2 动态响应 76
3.6 小结 82
第4 章 随机分析 83
4.1 概率论 83
4.1.1 概率空间 83
4.1.2 随机变量 83
4.1.3 希尔伯特空间 84
4.2 可靠性 84
4.2.1 不确定性的来源 84
4.2.2 随机变量和极限状态函数 84
4.2.3 早期方法 85
4.3 模拟方法 86
4.3.1 直接蒙特卡罗模拟法 86
4.3.2 重要性采样 86
4.3.3 分层采样 86
4.3.4 定向采样 87
4.3.5 子集模拟 87
4.4 可靠性 89
第5 章 数字孪生动态系统 91
5.1 数字孪生系统的动态模型 91
5.1.1 单自由度系统:标称模型 91
5.1.2 数字孪生模型 92
5.2 由刚度演化的数字孪生 95
5.2.1 获取精确的固有频率数据 95
5.2.2 带误差的固有频率数据 97
5.2.3 带误差估计的固有频率数据 98
5.2.4 数值说明 99
5.3 由质量演化的数字孪生 100
5.3.1 获取精确的固有频率数据 100
5.3.2 带误差的固有频率数据 102
5.3.3 带误差估计的固有频率数据 102
5.3.4 数值说明 103
5.4 由质量和刚度演化的数字孪生 105
5.4.1 获取精确的固有频率数据 106
5.4.2 带误差的精确固有频率数据 107
5.4.3 带误差估计的精确固有频率数据 108
5.4.4 数值说明 109
5.5 讨论 113
5.6 小结 116
第6 章 机器学习和代理模型 119
6.1 方差分解分析 119
6.2 混沌多项式展开法 124
6.3 支持向量机 125
6.4 神经网络 127
6.5 高斯过程 128
6.6 混合多项式相关函数展开法 129
第7 章 基于代理的动态系统数字孪生体 133
7.1 数字孪生动态模型 136
7.2 高斯过程仿真器概述 138
7.3 基于高斯过程的数字孪生 139
7.3.1 通过刚度演化的数字孪生 140
7.3.2 通过质量演化实现数字孪生 143
7.3.3 通过质量和刚度演化的数字孪生 148
7.4 讨论 153
7.5 小结 155
第8 章 多时间尺度的数字孪生 157
8.1 问题陈述 159
8.2 多时间尺度动态系统的数字孪生 161
8.2.1 数据收集与处理 163
8.2.2 高斯过程专家混合 167
8.2.3 算法 172
8.3 提出框架说明 173
8.3.1 通过刚度演化实现数字孪生 174
8.3.2 通过质量演化的数字孪生 178
8.3.3 通过质量和刚度演化的数字孪生系统 181
8.4 小结 185
第9 章 非线性多自由度系统的数字孪生 187
9.1 基于物理的标称模型 187
9.1.1 随机非线性MDOF 系统:标称模型 187
9.1.2 数字孪生 188
9.1.3 问题陈述 188
9.2 贝叶斯滤波算法 188
9.3 监督机器学习算法 192
9.4 高保真预测模型 193
9.5 示例 195
9.5.1 带Duffing 振荡器的2-DOF 系统 196
9.5.2 带有Duffing Van der Pol 振荡器的7-DOF 系统 205
—— 以下内容可扫描封底二维码下载 ——
参考文献 213
需要完全了解本书可以看下面:
链接🔗:地址《AI数字孪生建模与计算》