为了不浪费服务器资源(每台机器上均配置有SSD和大存储,且内存配置较高),提高ES读写性能,我们尝试进行了ES集群冷热分离的配置。
测试环境
两台机器,均配置有SSD和SATA盘。每台机器上运行两个ES实例,其中一个实例配置data目录为SSD
- 解压安装(两台机器)
mkdir -p /data/mdware
cd /data/mdware
tar -zxf elasticsearch-2.2.1.tar.gz
ln -s /data/mdware/elasticsearch-2.2.1 /data/mdware/es
cd /data/mdware/es/conf
mkdir instance1
mkdir instance2
cp elasticsearch.yml instance1
mv elasticsearch.yml instance2
cp logging.yml instance1
mv logging.yml instance2 - 配置(四个配置文件,注意区别)
action.auto_create_index : -protocol*,+*
cluster.name: knowops
#分别取名为kone1.2.3.4
node.name: "kone1"
# kone2配置为 /ssd/kone2data(/ssd SSD挂载目录)
path.data: /data/mdware/elasticsearch-2.2.1/kone1data
path.logs: /data/mdware/elasticsearch-2.2.1/kone1log
bootstrap.mlockall: true
# IP
network.host: 192.168.211.129
node.max_local_storage_nodes: 2
http.cors.enabled : true
http.cors.allow-origin : "*"
index.number_of_replicas: 0
discovery.zen.ping.unicast.hosts: ["192.168.211.129:9300","192.168.211.130:9300"]
-
启动
cd /data/mdware/es
ulimit -n 655360(打开文件数最低要求为65536)
export ES_HEAP_SIZE=16g(我的配置为1/8内存)
bin/elasticsearch -Des.insecure.allow.root=true -Des.path.conf=config/instance1 -d --node.tag=hot(SSD配置为hot节点)
export ES_HEAP_SIZE=16g(1/8内存)
bin/elasticsearch -Des.insecure.allow.root=true -Des.path.conf=config/instance2 -d --node.tag=stale -
模板配置
vi database.template.json
{
"template":"ni-database-*",
"settings":{
"index.number_of_replicas":"0",
"index.routing.allocation.require.tag" : "hot" //配置写入hot节点
},
"mappings":{
"_default_":{
"_all":{
"enabled":false,
"norms":{
"enabled":false
}
},
"dynamic_templates":[
{
"template1":{
"mapping":{
"doc_values":true,
"ignore_above":1024,
"index":"not_analyzed",
"type":"{dynamic_type}"
},
"match":"*"
}
}
],
"properties":{
"timeStart":{
"type":"date"
}
}
}
}
}
curl -XPUT 192.168.211.130:9200/_template/ni-database-template -d @database.template.json
- 定时任务
我们的索引是按天生成的,所以每天00:30定时任务移动数据到stale节点
#/bin/bash
time=`date -d last-day "+%Y.%m.%d"`
curl -XPUT http://localhost:9200/*-${time}/_settings?pretty -d'
{
"index.routing.allocation.require.tag": "stale"
}'
- 集群效果(kopf插件)
转:https://www.jianshu.com/p/f13a6dbb84ed