240720 knn 最近邻

K最邻近(KNN,K-NearestNeighbor)  结果:

其中虚线就是拟合后的模型

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
from sklearn import neighbors

# 加载数据
amplitude = 10
num_points = 100
X = amplitude * np.random.rand(num_points, 1) - 0.5 * amplitude

# 加噪声
y = np.sinc(X).ravel() 
y += 0.2 * (0.5 - np.random.rand(y.size))

# 画图
plt.figure()
plt.scatter(X, y, s=40, c='k', facecolors='none')
plt.title('Input data')

# 用输入数据的10倍设置网格
x_values = np.linspace(-0.5*amplitude, 0.5*amplitude, 10*num_points)[:, np.newaxis]

# 最近邻 8
n_neighbors = 8

# 训练knn
knn_regressor = neighbors.KNeighborsRegressor(n_neighbors, weights='distance')
y_values = knn_regressor.fit(X, y).predict(x_values)

# 画图
plt.figure()
plt.scatter(X, y, s=40, c='k', facecolors='none', label='input data')
plt.plot(x_values, y_values, c='k', linestyle='--', label='predicted values')
plt.xlim(X.min() - 1, X.max() + 1)
plt.ylim(y.min() - 0.2, y.max() + 0.2)
plt.axis('tight')
plt.legend()
plt.title('K Nearest Neighbors Regressor')

plt.show()
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值