240721 knn 计算用户1和用户2之间的评分-相关度

knn通过计算电影相关度,计算用户1和用户2的评分

import json
import numpy as np
 
# 计算欧式距离分数
def euclidean_score(dataset, user1, user2):
    if user1 not in dataset:
        raise TypeError('User ' + user1 + ' not present in the dataset')

    if user2 not in dataset:
        raise TypeError('User ' + user2 + ' not present in the dataset')

    # 提取用户1和用户2的评论过的电影
    rated_by_both = {} 

    for item in dataset[user1]:
        if item in dataset[user2]:
            rated_by_both[item] = 1

    # 如果没有评分,得分为0
    if len(rated_by_both) == 0:
        return 0

    squared_differences = [] 

    for item in dataset[user1]:
        if item in dataset[user2]:
            squared_differences.append(np.square(dataset[user1][item] - dataset[user2][item]))
        
    return 1 / (1 + np.sqrt(np.sum(squared_differences))) 
# 计算得分
if __name__=='__main__':
    data_file = 'movie_ratings.json'

    with open(data_file, 'r') as f:
        data = json.loads(f.read())

    user1 = 'John Carson'
    user2 = 'Michelle Peterson'

    print "\nEuclidean score:"
    print euclidean_score(data, user1, user2) 
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值