Spark是什么?
Spark,是一种通用的大数据计算框架,正如传统大数据技术Hadoop的MapReduce、Hive引擎,以及Storm流式实时计算引擎等。 Spark包含了大数据领域常见的各种计算框架:比如Spark Core用于离线计算,Spark SQL用于交互式查询,Spark Streaming用于实时流式计算,Spark MLlib用于机器学习,Spark GraphX用于图计算。 Spark主要用于大数据的计算,而Hadoop以后主要用于大数据的存储(比如HDFS、Hive、HBase等),以及资源调度(Yarn)。
Spark整体架构
Spark的特点:
·速度快:Spark基于内存进行计算(当然也有部分计算基于磁盘,比如shuffle)。 ·容易上手开发:Spark的基于RDD的计算模型,比Hadoop的基于Map-Reduce的计算模型要更加易于理解,更加易于上手开发,实现各种复杂功能,比如二次排序、topn等复杂操作时,更加便捷。 ·超强的通用性:Spark提供了Spark RDD、Spark SQL、Spark Streaming、Spark MLlib、Spark GraphX等技术组件,可以一站式地完成大数据领域的离线批处理、交互式查询、流式计算、机器学习、图计算等常见的任务。 ·集成Hadoop:Spark并不是要成为一个大数据领域的“独裁者”,一个人霸占大数据领域所有的“地盘”,而是与Hadoop进行了高度的集成,两者可以完美的配合使用。Hadoop的HDFS、Hive、HBase负责存储,YARN负责资源调度;Spark复杂大数据计算。实际上,Hadoop+Spark的组合,是一种“double win”的组合。
Spark VS MapReduce:
MapReduce能够完成的各种离线批处理功能,以及常见算法(比如二次排序、topn等),基于Spark RDD的核心编程,都可以实现,并且可以更好地、更容易地实现。而且基于Spark RDD编写的离线批处理程序,运行速度是MapReduce的数倍,速度上有非常明显的优势。 Spark相较于MapReduce速度快的最主要原因就在于,MapReduce的计算模型太死板,必须是map-reduce模式,有时候即使完成一些诸如过滤之类的操作,也必须经过map-reduce过程,这样就必须经过shuffle过程。而MapReduce的shuffle过程是最消耗性能的,因为shuffle中间的过程必须基于磁盘来读写。而Spark的shuffle虽然也要基于磁盘,但是其大量transformation操作,比如单纯的map或者filter等操作,可以直接基于内存进行pipeline操作,速度性能自然大大提升。 但是Spark也有其劣势。由于Spark基于内存进行计算,虽然开发容易,但是真正面对大数据的时候(比如一次操作针对10亿以上级别),在没有进行调优的情况下,可能会出现各种各样的问题,比如OOM内存溢出等等。导致Spark程序可能都无法完全运行起来,就报错挂掉了,而MapReduce即使是运行缓慢,但是至少可以慢慢运行完。 此外,Spark由于是新崛起的技术新秀,因此在大数据领域的完善程度,肯定不如MapReduce,比如基于HBase、Hive作为离线批处理程序的输入输出,Spark就远没有MapReduce来的完善。实现起来非常麻烦。
Spark SQL VS Hive:
Spark SQL实际上并不能完全替代Hive,因为Hive是一种基于HDFS的数据仓库,并且提供了基于SQL模型的,针对存储了大数据的数据仓库,进行分布式交互查询的查询引擎。 严格的来说,Spark SQL能够替代的,是Hive的查询引擎,而不是Hive本身,实际上即使在生产环境下,Spark SQL也是针对Hive数据仓库中的数据进行查询,Spark本身自己是不提供存储的,自然也不可能替代Hive作为数据仓库的这个功能。 Spark SQL的一个优点,相较于Hive查询引擎来说,就是速度快,同样的SQL语句,可能使用Hive的查询引擎,由于其底层基于MapReduce,必须经过shuffle过程走磁盘,因此速度是非常缓慢的。很多复杂的SQL语句,在hive中执行都需要一个小时以上的时间。而Spark SQL由于其底层基于Spark自身的基于内存的特点,因此速度达到了Hive查询引擎的数倍以上。 但是Spark SQL由于与Spark一样,是大数据领域的新起的新秀,因此还不够完善,有少量的Hive支持的高级特性,Spark SQL还不支持,导致Spark SQL暂时还不能完全替代Hive的查询引擎。而只能在部分Spark SQL功能特性可以满足需求的场景下,进行使用。 而Spark SQL相较于Hive的另外一个优点,就是支持大量不同的数据源,包括hive、json、parquet、jdbc等等。此外,Spark SQL由于身处Spark技术堆栈内,也是基于RDD来工作,因此可以与Spark的其他组件无缝整合使用,配合起来实现许多复杂的功能。比如Spark SQL支持可以直接针对hdfs文件执行sql语句!
Spark Streaming VS Storm:
Spark Streaming与Storm都可以用于进行实时流计算。但是他们两者的区别是非常大的。其中区别之一,就是,Spark Streaming和Storm的计算模型完全不一样,Spark Streaming是基于RDD的,因此需要将一小段时间内的,比如1秒内的数据,收集起来,作为一个RDD,然后再针对这个batch的数据进行处理。而Storm却可以做到每来一条数据,都可以立即进行处理和计算。因此,Spark Streaming实际上严格意义上来说,只能称作准实时的流计算框架;而Storm是真正意义上的实时计算框架。 此外,Storm支持的一项高级特性,是Spark Streaming暂时不具备的,即Storm支持在分布式流式计算程序(Topology)在运行过程中,可以动态地调整并行度,从而动态提高并发处理能力。而Spark Streaming是无法动态调整并行度的。 但是Spark Streaming也有其优点,首先Spark Streaming由于是基于batch进行处理的,因此相较于Storm基于单条数据进行处理,具有数倍甚至数十倍的吞吐量。 此外,Spark Streaming由于也身处于Spark生态圈内,因此Spark Streaming可以与Spark Core、Spark SQL,甚至是Spark MLlib、Spark GraphX进行无缝整合。流式处理完的数据,可以立即进行各种map、reduce转换操作,可以立即使用sql进行查询,甚至可以立即使用machine learning或者图计算算法进行处理。这种一站式的大数据处理功能和优势,是Storm无法匹敌的。 因此,综合上述来看,通常在对实时性要求特别高,而且实时数据量不稳定,比如在白天有高峰期的情况下,可以选择使用Storm。但是如果是对实时性要求一般,允许1秒的准实时处理,而且不要求动态调整并行度的话,选择Spark Streaming是更好的选择。