

Abstract—Meta reinforcement learning (Meta RL) has been
amply explored to quickly learn an unseen task by transferring
previously learned knowledge from similar tasks. However, most
state-of-the-art Meta RL algorithms require the meta-training
tasks to have a dense coverage of the task distribution and a
great amount of data for each of them. In this paper, we propose
MetaDreamer, a context-based Meta RL algorithm that requires
less real training tasks and data by doing meta-imagination and
MDP-imagination (Markov-Decision-Process). We perform meta-
imagination by interpolating on the learned latent context space
with disentangled properties, as well as MDP-imaginati
最低0.47元/天 解锁文章
778

被折叠的 条评论
为什么被折叠?



