Dream to Adapt: Meta Reinforcement Learning byLatent Context Imagination and MDP Imagination阅读要点

Abstract—Meta reinforcement learning (Meta RL) has been
amply explored to quickly learn an unseen task by transferring
previously learned knowledge from similar tasks. However, most
state-of-the-art Meta RL algorithms require the meta-training
tasks to have a dense coverage of the task distribution and a
great amount of data for each of them. In this paper, we propose
MetaDreamer, a context-based Meta RL algorithm that requires
less real training tasks and data by doing meta-imagination and
MDP-imagination (Markov-Decision-Process). We perform meta-
imagination by interpolating on the learned latent context space
with disentangled properties, as well as MDP-imaginati

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值