【学习笔记】Lucas定理

\(Lucas\)定理

$ C_n^m\pmod p\equiv C_{n\mod p}^{m\mod p}*C_{\lfloor n/p\rfloor}^{\lfloor m/p\rfloor}\pmod p $

一句话概括,就是一个组合数可以拆成\(P\)进制下的乘积

这个算法可以处理当\(m,n\)非常大的时候的取模\((\)当然你可以用高精度处理\()\)

需要注意的几点

\(Lucas(x,0,mod)=1\),直接返回\(1\)即可

注意处理阶乘的数组 \(a[0]=1\),因为\(0!=1\)

\(long~long\)

注意处处取模

\(Describtion\)

给定\(n,m,p(1<=n,m,p<=10^5)\)

\(C_{n+m}^m\ mod\ p\)

保证\(p\)为质数

\(Input\)

第一行一个数\(T(T<=10)\),表示数据组数

第二行开始共\(T\)行,每行三个数\(n,m,p\)

\(Output\)

\(T\)行,每行一个整数表示答案

\(Solution\)

就是模板,我又有什么可说的呢

\(a[i]\)表示\(i\)的阶乘,当然要取模
有个特别注意的点,当且仅当\(gcd(a,p)=1\)\(p\)是质数时,\(a^{p-1}=1\pmod p\)(费马小定理)成立,所以这个题直接用费马小定理处理逆元即可
具体细节自己看代码吧

#include<cstdio>
#include<iostream>
#define maxn 100010
#define ll long long
using namespace std;
ll a[maxn];
int T,n,m,p;
ll quickpower(ll A,int B,int mod)
{
    A%=mod;
    ll ans=1;
    while(B)
    {
        if(B&1)
        ans=(ans*A)%mod;
        A=(A*A)%mod;
        B>>=1;
    }
    return ans%mod;
}
inline int read()
{
    int x=0,f=1; char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
ll CC(ll n,ll m)
{
    /*注意判断*/if(m>n) return 0;
    //注意取模 
    //费马小定理求逆元 
    return ((a[n]*quickpower(a[m],p-2,p))%p*quickpower(a[n-m],p-2,p)%p); 
}
ll Lucas(ll n,ll m)
{
    if(!m) return 1;
    return CC(n%p,m%p)*Lucas(n/p,m/p)%p;//注意取模 
}
int main()
{
    T=read();
    while(T--)
    {
        n=read(); m=read(); p=read();
        a[0]=1;//特别注意!!!
        for(int i=1;i<=p;++i) a[i]=(a[i-1]*i)%p;
        printf("%d\n",Lucas(n+m,m));
    }
    return 0;
}

转载于:https://www.cnblogs.com/Liuz8848/p/11019347.html

weixin295微信小程序选课系统+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值