迪杰斯特拉(Dijkstra)算法

1,迪杰斯特拉算法介绍

迪杰斯特拉算法(Dijkstra)也叫狄克斯特拉算法,它使用类似广度优先搜索的方法,解决从一个顶点到其他所有顶点的最短路径问题,它解决的是加权图(不能有负权)的最短路径问题。

从起始点开始,采用贪心算法的策略,每次选择一个没被标记且距离起始点最近的顶点,把它标记下,然后更新和它邻接的顶点 ……,直到所有顶点都计算完为止。

在这里插入图片描述

如上图所示,假如计算从上海到其他所有城市的最短时间,上面的时间有可能是开车,有可能是高铁也可能是坐飞机,和真实距离不成正比。

我们从起始点开始,使用一个数组 dis数组中 dis[j] 的值表示从起始点到顶点 j 的时间,刚开始的时候,起始点到他自己为 0 ,到其他顶点都为无穷大,如下图所示。

在这里插入图片描述

如果想要减少从起始点到 j 的时间,唯一的方式就是需要寻找一个中转站 k 。从起始点到 k 的时间为 dis[k] ,从 kj 的时间为 g[k][j] ,然后判断中转的总时间 dis[k] + g[k][j] 是否小于 dis[j] ,如果中转时间小于 dis[j] ,就更新 dis[j]

比如最上面图中,从起始点到南京的时间是 3 小时,如果通过杭州中转,时间就会变成 2 小时。核心代码是下面这行。

dis[j] = min(dis[j], dis[k] + g[k][j]);

迪杰斯特拉算法的解题思路如下:

1,从起始点开始计算所有和它相连的点(也就是起始点指向的点),计算完之后把起始点标记下(表示已经计算过了)。
2,找出离起始点最近且没有被标记过的点 v ,计算所有和 v 相连且没有被标记过的点,计算完之后把 v 标记下。
3,重复上面的步骤 2 ,直到所有顶点都标记完为止。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2,迪杰斯特拉算法的代码实现

迪杰斯特拉算法使用的是贪心的策略,每次都是从未标记的顶点中找到一个离起始点最近的点,用它来更新所有和它连接且未被标记过的点,代码比较简单,我们来看下。

Java 代码:

private void test() {
    int[][] g = {{0, 1, 3, 0, 0, 0},// 图的邻接矩阵。
            {0, 0, 1, 4, 2, 0},
            {0, 0, 0, 5, 5, 0},
            {0, 0, 0, 0, 0, 3},
            {0, 0, 0, 1, 0, 6},
            {0, 0, 0, 0, 0, 0}};
    dijkstra(g, 0);
}

/**
 * @param g     图的邻接矩阵
 * @param start 起始点
 */
public void dijkstra(int[][] g, int start) {
    int n = g.length;// 顶点的个数。
    int[] dis = new int[n];// 每个点到起始点的距离
    // 起始点到其他所有顶点默认给一个非常大的值,
    // 要注意下面加的时候防止出现溢出。
    Arrays.fill(dis, Integer.MAX_VALUE >> 1);
    dis[start] = 0;// 起始点到自己的值是 0 。
    boolean visited[] = new boolean[n];// 标记哪些顶点被访问过
    for (int i = 0; i < n; i++) {
        int k = -1;// 下一个没被标记且离起始点最近的顶点。
        int min = Integer.MAX_VALUE; // min 是 k 到起始点的值。
        for (int j = 0; j < n; j++) {// 寻找 k。
            if (!visited[j] && dis[j] < min) {
                min = dis[j];
                k = j;
            }
        }
        visited[k] = true;// 标记
        for (int j = 0; j < n; j++) {// 核心代码。
            // 顶点 j 没有被标记,并且 k 有到 j 的路径,并且这个路径更近,就更新。
            if (!visited[j] && g[k][j] != 0 && dis[k] + g[k][j] < dis[j])
                dis[j] = dis[k] + g[k][j];
        }
    }
    // 打印数组dis的值,测试使用。
    for (int di : dis)
        System.out.print(di + ",");
}

C++ 代码:

/**
 * @param g       图的邻接矩阵
 * @param start   起始点
 */
void dijkstra(vector<vector<int>> &g, int start) {
    const int n = g.size();// 顶点的个数。
    vector<int> dis(n, INT_MAX/2);// 每个点到起始点的距离
    dis[start] = 0;// 起始点到自己的值是 0 。
    vector<bool> visited(n, false); // 标记哪些顶点被访问过
    for (int i = 0; i < n; i++) {
        int k = -1;// 下一个没被标记且离起始点最近的顶点。
        int min = INT_MAX; // min 是 k 到起始点的值。
        for (int j = 0; j < n; j++) {// 寻找 k。
            if (!visited[j] && dis[j] < min) {
                min = dis[j];
                k = j;
            }
        }
        visited[k] = true;// 标记
        for (int j = 0; j < n; j++) {// 核心代码。
            // 顶点 j 没有被标记,并且 k 有到 j 的路径,并且这个路径更近,就更新。
            if (!visited[j] && g[k][j] != 0 && dis[k] + g[k][j] < dis[j])
                dis[j] = dis[k] + g[k][j];
        }
    }
    // 打印数组dis的值,测试使用。
    for (int di: dis)
        cout << di << ",";
}

3,迪杰斯特拉算法的堆优化

我们看到上面代码中外面的循环是遍历顶点,里面的循环主要是查找离起始点最近的顶点 v ,然后更新和 v 邻接的顶点。

如果这个图是个稀疏图,边特别少的话,在一个个查找很明显效率不高,所以在这种情况下可以使用最小堆来优化下,每次与顶点 v 邻接的点计算完之后把它加入到堆中,下次循环的时候直接弹出堆顶元素即可,它就是离起始点最近的点。(使用堆优化,图最好使用邻接表的存储方式)

Java 代码:

/**
 * 使用堆优化的算法
 *
 * @param g     图的邻接矩阵
 * @param start 起始点
 */
public void dijkstra(int[][] g, int start) {
    int n = g.length;// 顶点的个数。
    int[] dis = new int[n];// 每个点到起始点的距离
    Arrays.fill(dis, Integer.MAX_VALUE >> 1);
    dis[start] = 0;// 起始点到自己的值是 0 。
    boolean visited[] = new boolean[n];// 标记哪些顶点被访问过
    // 创建堆,根据到起始点的距离排序
    PriorityQueue<int[]> pq = new PriorityQueue<>(Comparator.comparingInt(a -> a[0]));
    pq.offer(new int[]{0, start});// 起始点到它自己的距离是 0 。
    for (int i = 0; i < n; i++) {
        if (pq.isEmpty()) break; // 如果堆为空,退出循环
        // 每次出队都是离起始点最近且没被标记过的顶点。
        int k = pq.poll()[1];
        visited[k] = true;// 标记
        for (int j = 0; j < n; j++) {// 核心代码。
            // 顶点 j 没有被标记,并且 k 有到 j 的路径,并且这个路径更近,就更新。
            if (!visited[j] && g[k][j] != 0 && dis[k] + g[k][j] < dis[j]) {
                // 如果顶点 j 经过 k 到起始点的距离更近,就更新顶点 j 到
                // 起始点的距离,并把它添加到堆中。
                dis[j] = dis[k] + g[k][j];
                pq.offer(new int[]{dis[j], j});
            }
        }
    }
    // 打印数组dis的值,测试使用。
    for (int di : dis)
        System.out.print(di + ",");
}

C++ 代码:

void dijkstra(vector<vector<int>> &g, int start) {
    int n = g.size(); // 顶点的个数
    vector<int> dis(n, INT_MAX / 2); // 每个点到起始点的距离
    dis[start] = 0; // 起始点到自己的值是 0
    vector<bool> visited(n, false); // 标记哪些顶点被访问过
    // 创建堆,根据到起始点的距离排序
    priority_queue<pair<int, int>, vector<pair<int, int>>, greater<>> pq;
    pq.emplace(0, start); // 起始点到它自己的距离是 0
    for (int i = 0; i < n; i++) {
        // 每次出队都是离起始点最近且没被标记过的顶点
        if (pq.empty()) break; // 如果堆为空,退出循环
        int k = pq.top().second;
        pq.pop();
        visited[k] = true; // 标记
        for (int j = 0; j < n; j++) { // 核心代码
            // 顶点 j 没有被标记,并且 k 有到 j 的路径,并且这个路径更近,就更新
            if (!visited[j] && g[k][j] != 0 && dis[k] + g[k][j] < dis[j]) {
                // 如果顶点 j 经过 k 到起始点的距离更近,就更新顶点 j 到起始点的距离,并把它添加到堆中
                dis[j] = dis[k] + g[k][j];
                pq.emplace(dis[j], j);
            }
        }
    }

    // 打印数组dis的值,测试使用
    for (int di: dis)
        cout << di << ",";
    cout << endl;
}

4,为什么迪杰斯特拉算法不能处理带有负权边的图

为什么通过上述的操作可以保证得到的 dis 值最小?因为这里的图是没有负权边的,值只能越加越大,我们不断选择最小值进行标记然后更新和它邻接的点,即贪心的思路,最终保证起始点到每个顶点的值都是最小的。

如果有负权边在使用 Dijkstra 算法就行不通了,如下图所示,其中有负权边。

在这里插入图片描述
在这里插入图片描述

最后的结果是起始点到顶点 2 的值是 3 ,但实际上如果选择 0->1->2 这条路径的值是 2 ,会更小,所以有负权边并不适合 Dijkstra 算法。如果图是有环的可不可以使用 Dijkstra 算法呢?实际上只要没有负权边无论有环无环都是可以使用 Dijkstra 算法的。

如果有负权边该怎么解决呢?我们可以使用贝尔曼-福特算法(Bellman–Ford)和最短路径快速算法(Shortest Path Faster Algorithm:简称:SPFA),这两种算法虽然可以解决带有负权边的图,但不能解决有负权回路的图,关于这两种算法,后面我们也都会介绍。
有负权边并不适合 Dijkstra 算法。如果图是有环的可不可以使用 Dijkstra 算法呢?实际上只要没有负权边无论有环无环都是可以使用 Dijkstra 算法的

如果有负权边该怎么解决呢?我们可以使用贝尔曼-福特算法(Bellman–Ford)和最短路径快速算法(Shortest Path Faster Algorithm:简称:SPFA),这两种算法虽然可以解决带有负权边的图,但不能解决有负权回路的图,关于这两种算法,后面我们也都会介绍。

迪杰斯特拉(Dijkstra)算法是一种寻找图中两点间最短路径的经典算法,适用于无向图和有向图,特别是当边权表示距离、费用或其他成本时。算法的基本思想是从起点开始逐步探索邻接节点,并始终选择当前已访问节点到未访问节点中代价最小的一条边作为下一步的前进方向。 在MATLAB中实现迪杰斯特拉算法通常涉及以下几个步骤: 1. **初始化**:创建一个二维数组或矩阵来存储各顶点之间的距离,将所有初始值设置为无穷大,除了起点到自身的距离设置为0;创建一个布尔型数组记录哪些节点已经被处理过。 2. **选取最小距离节点**:从未被处理过的节点中选出距离起点最近的一个节点作为当前节点。 3. **更新距离**:对于当前节点的所有相邻节点,如果从起点通过当前节点到相邻节点的距离比之前记录的距离更小,则更新这个距离。 4. **标记已处理节点**:将当前节点标记为已经处理过。 5. **重复步骤2至4**,直到所有节点都被处理或找到目标节点。 MATLAB代码示例: ```matlab function [shortestPaths, processedNodes] = dijkstra(graphMatrix, startNode) % graphMatrix 是一个邻接矩阵,其中非零元素表示两个节点间的距离。 % startNode 是起始节点的位置。 % shortestPaths 和 processedNodes 分别返回最短路径矩阵和处理节点状态。 n = size(graphMatrix, 1); visited = false(n, 1); % 初始化未访问节点标志位 distances = inf(1, n); % 初始距离设为无穷大 distances(startNode) = 0; % 起始节点距离设为0 for i = 1:n-1 current = find(~visited & (distances == min(distances(~visited))), 1); visited(current) = true; for j = 1:n if ~visited(j) && graphMatrix(current, j) ~= 0 newDist = distances(current) + graphMatrix(current, j); if newDist < distances(j) distances(j) = newDist; end end end end shortestPaths = distances; processedNodes = visited; ``` **相关问题**: 1. **如何优化迪杰斯特拉算法**?在大数据集上运行时,可以考虑使用优先队列来加速查找下一个最短路径候选节点的过程。 2. **迪杰斯特拉算法与贝尔曼-福特算法的区别是什么**?贝尔曼-福特算法可以在存在负权重边的情况下求解最短路径,而迪杰斯特拉算法不支持负权重边。 3. **如何将迪杰斯特拉算法应用到实际问题中**?比如网络路由优化、地图导航系统中的路径规划等场景,都可以利用此算法来找到从源点到所有其他点的最短路径
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据结构和算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值