高手过招,NLP工程师的养成之道

本文介绍了自然语言处理(NLP)在人工智能领域的关键地位及其快速发展,特别是深度迁移学习带来的突破。NLP工程师的需求增长,薪资也随之上涨。文章强调了NLP在文本数据处理中的重要性,并提及《NLP实战高手课》这一学习资源,帮助提升NLP实战技能,包括快速入门、技能进阶和案例实战。课程由资深NLP专家授课,覆盖经典模型、实战案例和系统部署等内容,旨在帮助学习者全面掌握NLP技术。
摘要由CSDN通过智能技术生成

作为最典型的 AI 领域之一,NLP  (自然语言处理,Natural Language Processing) 被誉为“人工智能皇冠上的明珠”,近两年取得了显著突破。

 

随着 OpenAI 等技术的诞生、迁移学习等技术的成功应用,使得 NLP 技术在搜索、推荐、信息流、互联网金融、社交网络等领域不断发展壮大。与此同时,NLP 工程师也受到了广泛关注和追捧, 从各大招聘平台上,可以看到相关岗位的薪资随之水涨船高

       

(上图为:某招聘网站 NLP 工程师岗位及薪资) 

       

(上图为:用人单位岗位JD)

 

究其原因,主要由于 NLP 的应用前景十分广泛。就我们常见的 4 个人工智能领域(即表格化数据、文本数据、图像和视频数据、语音数据)而言,可以说文本数据的信息含量仅次于表格化数据,而想要高效利用好文本数据,就离不开 NLP 技术。

NLP的发展

从技术角度说,在深度迁移学习(如 BERT 模型出现)之前,提升 NLP 相关任务准确性的最直接方式是增加标注样本。而在深度迁移学习模型出现后,仅仅通过少量样本就可以达到相对满意的精度,这使得 NLP 的应用得到了进一步发展。

 

尽管如此,但由于自然语言本身的复杂性,从整体看还无法达到人脸识别一样的精度。而且,NLP 涉及领域广泛、发展迅速,很多新提出的方法,复现性都不强。大多数人也只能简单使用一些开源框架,一旦要解决比较复杂的 NLP 任务,就束手无策了。

 

NLP 领域发展非常迅速,很多知识都在不断更新迭代。所以,其学习的方法就显得尤其重要。刚好极客时间就有一门视频课《NLP 实战高手课》我自己也在学习,这个课程能带你掌握高效挖掘表格化数据的技巧,学会经典 NLP 任务的解决方案,并且通过几个实战案例,让你获得一整套从开发到部署的落地经验,全方位提升你的 NLP 实战技能。如果你打算上手或正在研究 NLP,这个课程无疑是你进阶的绝佳选择。

 !双12特惠!

????????????

原价129

拼团+口令「study2020」仅89!

且,人专享19.9!!!

但!仅限前50个名额

????????????

作者是谁?

作者王然,是众微科技 AI LAB 技术负责人,阿姆斯特丹大学数学和计量经济学双硕士。

 

此前,曾任职百分点信息科技有限公司的认知智能实验室技术负责人,主要负责算法部分,他带领团队开发了人机对话机器人和文书校对系统,无论就准确性还是召回率来说,均达到了业界前沿水平,同时他还负责了 20+ 其他技术项目。在业余时间里,他还经常活跃在微软亚洲研究院以及 DeepMind 举办的比赛和研究中,并取得了不错的成绩。

课程有什么特点?如何设计的?

在课程中,作者结合自身的实战经验,总结出了一套切实可落地的方法论,帮你深入理解 NLP。总的来说,这门课主要有以下几个特点

 

  1. 课程中的所有技术都能在工程实践或比赛中落地,其方法不但能极大地提高准确性,还能保证其稳定性。

  2. 在材料选取方面,还介绍了一些在 paper 中少见的“黑科技”,以及那些非常有希望做出成果的研究方向。

  3. 不仅会讲解 NLP 的典型方法,还会介绍人工智能其他领域的通用思路和方法。

  4. 通过 3 大实战案例,深入讲解 NLP 的各项技术,并将其余人工智能的其他领域想结合。

 

在课程设置上,主要分为三大模块:

一、快速入门篇:NLP 及人工智能领域入门介绍,包括在学术界和业界当中的一些经验和坑;经典的文本分类模型讲解,讲完即可上手一个文本分类项目;

二、技能进阶篇:讲解如何在给定数据集的情况下,尽可能提升模型准确的方法;讲解结构化数据处理方法,并介绍如何进行多模态建模;关于文本分类会竞赛中的各种黑科技,介绍基于神经网络(包括有额外数据和无额外数据)、基于 Dependency Parsing 和 Semantic Parsing、基于深度学习和数理逻辑结合、结合传统四大类建模方式和上百个 trick;单代理和多代理的增强学习,并介绍元学习、AutoML 和推荐系统;

三、案例实战篇:通过 2 个实战案例,将知识进行串联:Kaggle 的问题等价性竞赛的解决方案和基于开源情报的风险预警系统;并重点介绍系统部署:如何将已经训练好的模型用 TF Serving 框架进行服务,介绍微服务框架 Kubernetes 和 Istio。

 

学完这门课,你会有下面几点收获:

  • 对 NLP 乃至人工智能领域一个比较 up-to-date 的认知;

  • 具备一定的 NLP 比赛和研究能力;

  • 将 NLP 相关项目进行完整落地的能力;

  • 进一步进行相关领域自学和解决问题的能力。

 

花 2 分钟,看下其他学员的评价,真的是好评如潮:

现在从我这订阅有什么福利?

 !双12特惠!

????????????

原价129

拼团+口令「study2020」仅需89!

且,人专享19.9!!!

但!仅限前50个名额

????????????

赶上极客时间双十二活动,再给你推荐一门我觉得很不错的课。

《TensorFlow 快速入门与实战》

作为当下最流行的深度学习框架,TensorFlow 是从事人工智能相关工作必不可少的一环。作者彭靖田是谷歌机器学习开发专家,他结合了四个典型的应用场景实战,带你系统掌握 TensorFlow 的核心概念和架构,熟练熟练进行模型结构设计、训练及测试,想要入门,选这个再合适不过了。

????????????

拼团+口令「study2020」仅需89!

且,人仅需19.9!!!

????点击「阅读原文」,教你做个有能力的人!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值