压缩感知是近年来极为热门的研究前沿,在若干应用领域中都引起瞩目。最近粗浅地看了这方面一些研究,对于Compressive Sensing有了初步理解,在此分享一些资料与精华。本文针对陶哲轩和Emmanuel Candes上次到北京的讲座中对压缩感知的讲解进行讲解,让大家能够对这个新兴领域有一个初步概念。
compressive sensing(CS) 又称 compressived sensing ,compressived sample,大意是在采集信号的时候(模拟到数字),同时完成对信号压缩之意。中文的翻译成“压缩感知”,意思变得至少不太好理解了。
Compressed sensing is a mathematical tool that creates hi-res data sets from lo-res samples. It can be used to resurrect old musical recordings, find enemy radio signals, and generate MRIs much more quickly. Here’s how it would work with a photograph.
/***********************Compressive Sensing研究背景***********************/
(1)CS大约是2000年左右的一篇博士论文中,已经出现了雏形。后来被陶哲轩,C牛(Emmanuel Candes)和D(Donoho)牛,完善理论。这几位顶尖高手联手挖出了信号处理领域、机器学习领域,近10年最大的学术大坑。
2004年左右,大牛们聊天,觉得要起一个简单的名字,因为理论本身是“通过对信号的高度不完备线性测量的高精确的重建”,如果这样名字不响,不能起到理论推广作用。所以就成了现在的名字"compressive sensing"。
(2)陶哲轩,是这个世界上最聪明的人,他怎么会关注到CS呢?陶哲轩是这个世界上搞调和分析的顶尖高手之一(当然他别的方面也很厉害)。 压缩感知的发现是一次意外,话说一天,当时是加州理工学院教授(现在去了斯坦福)的Emmanuel Candès在研究名叫Shepp-Logan Phantom的图像,这种标准图像常被计算机科学家和工程师测试图像算法。Candès检查的图像质量非常差,充满了噪声,他认为名叫L1-minimization的数学算法能去除掉噪声条纹,结果算法真的起作用了,突然就觉得好神奇哦,“It was as if you gave me the first three digits of a 10-digit bank account number — and then I was able to guess the next seven,” he says. He tried rerunning the experiment on different kinds of phantom images; they resolved perfectly every time.。而且在图像变干净的同时,他发现图像的细节出人意料的完美起来。
某一日Candes去幼儿园接孩子,正好遇上了也在接孩子的陶哲轩,两人攀谈的过程中他提到了自己手头的困难,于是陶哲轩也开始想这个问题,它们成为两人合作的压缩感知领域第一篇论文的基础。Emmanuel Candès认为压缩感知(简写CS)技术具有广阔的应用前景,比如MRI,数码相机。数码相机镜头收集了大量的数据,然后再压缩,压缩时丢弃掉90%的数据。如果有CS,如果你的照相机收集了如此多的数据只是为了随后的删除,那么为什么不一开始就丢弃那90%的数据,直接去除冗余信息不仅可以节省电池电量,还能节省空间。
/***********************大牛介绍***********************/
陶哲轩:澳籍华人数学家,童年时期即天资过人,目前主要研究调和分析、偏微分方程、组合数学、解析数论和表示论。24岁起,他在加利福尼亚大学洛杉矶分校担任教授。他现在为该校终身数学教授。
Emmanuel Candes (C牛)是斯坦福大学的数学、统计学,电子工程荣誉教授,同时也是应用计算数学领域的教授。他的 研究领域主要是在这种数学协调分析、数学优化、统计估测,以及在影像科学、信号研究。 Emmanuel Candes 教 授曾获数项国际奖项,包括国家科学基金会最高个人奖项(该奖项主要奖励 35 岁以下的学者)、 2008 年信息社 会理论论文奖,以及国际行业应用数学学会授予的奖项等等。
David Donoho WaveLab是小波和相关的时频变换的一个Matlab例程库,由美国斯坦福大学的donoho维护