机器学习——深度学习(Deep Learning)

原创 2012年08月04日 09:49:03

Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得。


Key Words:有监督学习与无监督学习,分类、回归,密度估计、聚类,深度学习,Sparse DBN,


1. 有监督学习和无监督学习


给定一组数据(input,target)为Z=(X,Y)。

有监督学习:最常见的是regression & classification

regression:Y是实数vector。回归问题,就是拟合(X,Y)的一条曲线,使得下式cost function L最小。


classification:Y是一个finite number,可以看做类标号。分类问题需要首先给定有label的数据训练分类器,故属于有监督学习过程。分类问题中,cost function L(X,Y)是X属于类Y的概率的负对数。

,其中fi(X)=P(Y=i | X);


无监督学习:无监督学习的目的是学习一个function f,使它可以描述给定数据的位置分布P(Z)。 包括两种:density estimation & clustering.

density estimation就是密度估计,估计该数据在任意位置的分布密度

clustering就是聚类,将Z聚集几类(如K-Means),或者给出一个样本属于每一类的概率。由于不需要事先根据训练数据去train聚类器,故属于无监督学习。

PCA和很多deep learning算法都属于无监督学习。



2. 深度学习Deep Learning介绍

   Depth 概念:depth: the length of the longest path from an input to an output.

   Deep Architecture 的三个特点:深度不足会出现问题;人脑具有一个深度结构(每深入一层进行一次abstraction,由lower-layer的features描述而成的feature构成,就是上篇中提到的feature hierarchy问题,而且该hierarchy是一个稀疏矩阵);认知过程逐层进行,逐步抽象

   3篇文章介绍Deep Belief Networks,作为DBN的breakthrough


3.Deep Learning Algorithm 的核心思想:

    把learning hierarchy 看做一个network,则

    ①无监督学习用于每一层网络的pre-train;

    ②每次用无监督学习只训练一层,将其训练结果作为其higher一层的输入;

    ③用监督学习去调整所有层

这里不负责任地理解下,举个例子在Autoencoder中,无监督学习学的是feature,有监督学习用在fine-tuning. 比如每一个neural network 学出的hidden layer就是feature,作为下一次神经网络无监督学习的input……这样一次次就学出了一个deep的网络,每一层都是上一次学习的hidden layer。再用softmax classifier去fine-tuning这个deep network的系数。



这三个点是Deep Learning Algorithm的精髓,我在上一篇文章中也有讲到,其中第三部分:Learning Features Hierachy & Sparse DBN就讲了如何运用Sparse DBN进行feature学习。


4. Deep Learning 经典阅读材料:

阐述Deep learning主要思想的三篇文章:
06年后,大批deep learning文章涌现,感兴趣的可以看下大牛Yoshua Bengio的综Learning deep architectures for {AI},不过本文很长,很长……

5. Deep Learning工具—— Theano

     Theano是deep learning的Python库,要求首先熟悉Python语言和numpy,建议读者先看Theano basic tutorial,然后按照Getting Started 下载相关数据并用gradient descent的方法进行学习。

学习了Theano的基本方法后,可以练习写以下几个算法:

有监督学习:

  1. Logistic Regression - using Theano for something simple
  2. Multilayer perceptron - introduction to layers
  3. Deep Convolutional Network - a simplified version of LeNet5


无监督学习:




最后呢,推荐给大家基本ML的书籍:



关于Machine Learning更多的学习资料将继续更新,敬请关注本博客和新浪微博Sophia_qing


References:

1. Brief Introduction to ML for AI

2.Deep Learning Tutorial

3.A tutorial on deep learning - Video




深度学习Deep Learning(01)_CNN卷积神经网络

深度学习 Deep Learning github地址:https://github.com/lawlite19/DeepLearning_Python 有关神经网络的部分可以查看这里的BP神经网络的...
  • u013082989
  • u013082989
  • 2016-12-15 17:49:30
  • 10795

Deep Learning(深度学习)学习笔记整理系列之(一)

Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0  20...
  • zouxy09
  • zouxy09
  • 2013-04-08 23:35:33
  • 802383

深度学习导论 - 读李宏毅《1天搞懂深度学习》

先引用他人关于李宏毅教授关于深度学习导论的PPT,应该非常容易入门。 ”《1天搞懂深度学习》,300多页的ppt,台湾李宏毅教授写的,非常棒。不夸张地说,是我看过最系统,也最通俗易懂的,关于...
  • u010164190
  • u010164190
  • 2017-05-22 23:44:02
  • 19726

2017年深度学习重大研究进展全解读

选自Statsbot作者:Eduard Tyantov机器之心编译2017 年只剩不到十天,随着 NIPS 等重要会议的结束,是时候对这一年深度学习领域的重要研究与进展进行总结了。来自机器学习创业公司...
  • tkkzc3E6s4Ou4
  • tkkzc3E6s4Ou4
  • 2017-12-22 00:00:00
  • 1697

深度学习的主要应用举例

参考资料今天简单说一下 Deep Leaning 在各领域应用的几个例子,可以轻松地看一下它是怎么用在 Computer Vision,Speech Recognition, Text Process...
  • aliceyangxi1987
  • aliceyangxi1987
  • 2017-05-01 12:13:36
  • 5575

深度学习之图像修复

图像修复问题就是还原图像中缺失的部分。基于图像中已有信息,去还原图像中的缺失部分。从直观上看,这个问题能否解决是看情况的,还原的关键在于剩余信息的使用,剩余信息中如果存在有缺失部分信息的patch,那...
  • xinzhangyanxiang
  • xinzhangyanxiang
  • 2017-03-19 18:25:44
  • 18168

一套科技感很强的图标

  • 2004年06月10日 00:00
  • 67KB
  • 下载

深度学习(一)深度学习的发展历史

本次深度学习系列主要从以下几个方面记录,主要为CNN相关 另外最后会专留一章讲述CNN与计算机视觉中的目标检测的发展。∙\bullet发展历史 ∙\bullet基础结构 ∙\bullet损失函数...
  • u012177034
  • u012177034
  • 2016-08-19 17:19:06
  • 15817

神经网络和深度学习-学习总结

1. 简介     神经网络和深度学习是由Michael Nielsen所写,其特色是:兼顾理论和实战,是一本供初学者深入理解Deep Learning的好书。 2. 使用神经网络识别手写数字...
  • MyArrow
  • MyArrow
  • 2016-05-05 14:19:14
  • 24453

一篇文章搞懂人工智能、机器学习和深度学习之间的区别

概述2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源。这两年在不管在国内还是在国外,人工智能、机器学习仿佛一夜之前传遍大街小巷。机器学习作为人工智能的一种类型,可以让软...
  • xiangzhihong8
  • xiangzhihong8
  • 2017-04-09 21:37:34
  • 13478
收藏助手
不良信息举报
您举报文章:机器学习——深度学习(Deep Learning)
举报原因:
原因补充:

(最多只允许输入30个字)