Rachel Zhang的专栏

因为理想,所以拼搏,关注计算机应用的点点滴滴……

GMM的EM算法实现

在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明。本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。1. G...

2012-11-19 11:03:16

阅读数 119733

评论数 81

KMeans和KMedoid 的Matlab实现

KMeans和KMedoid算法是聚类算法中比较普遍的方法,本文讲了其原理和matlab中实现的代码。1.目标:       找出一个分割,使得距离平方和最小2.K-Means算法:       1. 将数据分为k个非空子集       2. 计算每个类中心点(k-means中用所有点的平均值,K...

2012-11-18 20:26:15

阅读数 51723

评论数 52

The Most Important Algorithms (in CS and Math)

本文是Christoph Koutschan列出来的32类计算机与数学领域最为重要的算法(按字符顺序排列)。覆盖的面很广,评价很精准。链接中加入了自己总结过的文章(或者用到该算法的例子),后面有时间将根据重点算法继续补充。原文转载from:http://www.risc.jku.at/people...

2012-11-15 16:45:24

阅读数 11207

评论数 8

聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut

聚类算法是ML中一个重要分支,一般采用unsupervised learning进行学习,本文根据常见聚类算法分类讲解K-Means, K-Medoids, GMM, Spectral clustering,Ncut五个算法在聚类中的应用。Clustering Algorithms分类1. Par...

2012-11-11 13:44:48

阅读数 117255

评论数 47

EM算法原理

在聚类中我们经常用到EM算法(i.e. Expectation - Maximization)进行参数估计, 在该算法中我们通过函数的凹/凸性,在expectation 和maximization两步中迭代地进行参数估计,并保证可以算法收敛,达到局部最优解。 PS:为了不在11.11这个吉祥的日子...

2012-11-10 23:49:42

阅读数 85634

评论数 54

统计学习方法——CART, Bagging, Random Forest, Boosting

本文从统计学角度讲解了CART(Classification And Regression Tree), Bagging(bootstrap aggregation), Random Forest Boosting四种分类器的特点与分类方法,参考材料为密歇根大学Ji Zhu的pdf与组会上王博的讲...

2012-11-10 09:46:34

阅读数 80056

评论数 24

提示
确定要删除当前文章?
取消 删除