[UVa11426]最大公约数之和——极限版II

题意:给出n,求:
\[\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\gcd(i,j)\]
多组数据,\(n<=4*10^6\)

sol

今天心血来潮再来写一写式子
首先这里求的是无序对而且还不能相等所以说我第一遍样例都没过
那么如果你求出了\(\sum_{i=1}^{n}\sum_{j=1}^{n}\gcd(i,j)\),你就只要把这个答案减去\(\sum_{i=1}^{n}i\)再除以二就可以了。你可以当做是,你求出的那个东西就是一整个矩阵的和,而题目要求的只是正对角线上方的部分,所以减掉对角线上的再除以2就是答案。
接下来开始大力开式子(接下来我们求的是\(\sum_{i=1}^{n}\sum_{j=1}^{n}\gcd(i,j)\))。
\[ans=\sum_{d=1}^{n}d*\sum_{i=1}^{n}\sum_{j=1}^{n}[\gcd(i,j)==d]\]
\[=\sum_{d=1}^{n}d*\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}[\gcd(i,j)==1]\]
\[=\sum_{d=1}^{n}d*\sum_{i=1}^{n/d}\mu(i)\lfloor\frac n{id}\rfloor^2\]
\[=\sum_{T=1}^{n}\lfloor\frac nT\rfloor^2\sum_{d|T}d*\mu(\frac Td)\]
然后线性筛这个函数
\[h(T)=\sum_{d|T}d*\mu(\frac Td)\]
求一个前缀和然后分块T
复杂度\(O(n+T\sqrt n)\)

code

#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
const int N = 4000000;
int gi()
{
    int x=0,w=1;char ch=getchar();
    while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
    if (ch=='-') w=0,ch=getchar();
    while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
    return w?x:-x;
}
int pri[N+5],tot,zhi[N+5];
ll low[N+5],h[N+5];
void Mobius()
{
    zhi[1]=low[1]=1;h[1]=1;
    for (int i=2;i<=N;i++)
    {
        if (!zhi[i]) low[i]=pri[++tot]=i,h[i]=i-1;
        for (int j=1;j<=tot&&i*pri[j]<=N;j++)
        {
            zhi[i*pri[j]]=1;
            if (i%pri[j]==0)
            {
                low[i*pri[j]]=low[i]*pri[j];
                if (low[i]==i)
                    h[i*pri[j]]=h[i]*pri[j];
                else
                    h[i*pri[j]]=h[i/low[i]]*h[low[i]*pri[j]];
                break;
            }
            low[i*pri[j]]=pri[j];
            h[i*pri[j]]=h[i]*h[pri[j]];
        }
    }
    for (int i=1;i<=N;i++)
        h[i]+=h[i-1];
}
int main()
{
    Mobius();
    while (233)
    {
        int n=gi(),i=1;
        if (n==0) break;
        ll ans=0;
        while (i<=n)
        {
            int j=n/(n/i);
            ans+=(h[j]-h[i-1])*(n/i)*(n/i);
            i=j+1;
        }
        printf("%lld\n",(ans-1ll*(n+1)*n/2)/2);
    }
    return 0;
}

转载于:https://www.cnblogs.com/zhoushuyu/p/8284296.html

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
weixin102旅游社交微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值