1046 A^B Mod C(快速幂取模)

1046 A^B Mod C(51NOD基础题)

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 
给出3个正整数A B C,求A^B Mod C。
例如,3 5 8,3^5 Mod 8 = 3。
Input
3个正整数A B C,中间用空格分隔。(1 <= A,B,C <= 10^9)
Output
输出计算结果
Input示例
3 5 8
Output示例
3
/*
1046 A^B Mod C(快速幂取模)

给出3个正整数A B C,求A^B Mod C。
(1 <= A,B,C <= 10^9)
*/ 


#include <cstdio>

#define LL long long 

LL quickmod(LL x , LL y , LL p ){
    LL re = 1 ;
    while(y){// x 表示二进制 y 上每个位置的 权值 
             // y 表示 x 的次幂  
        if(y&1==1){
            re = (re * x ) % p ; 
            y-- ; 
        }
        y>>=1 ; 
        x = (x * x )%p ; 
    }
    return re ; 
}

int  main(){
    LL a , b , c ; 
    while(~scanf("%lld%lld%lld" , &a , &b , &c)){
        LL result = quickmod(a , b , c ) ; 
        printf("%lld\n" , result) ; 
    }
    return 0 ; 
}

 

转载于:https://www.cnblogs.com/yi-ye-zhi-qiu/p/7553535.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值