《深度学习之Tensorflow:入门、原理与进阶实战》——线性回归

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 屏蔽这个警告,烦

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

# tfe = tf.contrib.eager # 开启Eager Execution
# tf.enable_eager_execution()
# # 在tf 2中,已经用eager来替代了session,使代码更加简洁
# data = tf.constant([1,2])
# print(data.numpy()) # 打印常数格式

plotdata = {"batchsize":[], "loss":[]}
def moving_average(a, w=10):
    if len(a) < w:
        return a[:]
    return [val if idx < w else sum(a[(idx-w):idx])/w for idx, val in enumerate(a)]

# 线性回归 y=2x,加入噪声
train_X = np.linspace(-1, 1, 100)
train_Y = 2 * train_X + np.random.randn(*train_X.shape) * 0.3
# 显示模拟数据点
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.legend()
# plt.show()

# 创建模型
# 占位符
X = tf.placeholder("float")
Y = tf.placeholder("float")
# 模型参数
W = tf.Variable(tf.random_normal([1], name="weight"))
b = tf.Variable(tf.zeros([1]), name="bias")
# 前向结构
z = tf.multiply(X, W) + b
# 反向优化
cost = tf.reduce_mean(tf.square(Y - z)) # 生成值与真实值的平方差
learning_rate = 0.01 # 学习率,代表调整参数的速度
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # 梯度下降

# 初始化所有变量
init = tf.global_variables_initializer()
# 定义参数
training_epochs = 20 # 迭代次数设置为20
display_step = 2

# 启动session
with tf.Session() as sess:
    sess.run(init)
    plotdata = {"batchsize":[], "loss":[]} #存放批次和损失值
    for epoch in range(training_epochs):
        # 向模型输入数据
        for (x, y) in zip(train_X, train_Y):
            sess.run(optimizer, feed_dict={X:x, Y:y})

        # 显示训练中的详细信息
        if epoch % display_step == 0:
            loss = sess.run(cost, feed_dict={X:train_X, Y:train_Y})
            print("Epoch:", epoch+1, "cost=", loss, "W=", sess.run(W), "b=", sess.run(b))
            if not (loss == "NA"):
                plotdata["batchsize"].append(epoch)
                plotdata["loss"].append(loss)
        
    print("Finished!")
    print("cost=", sess.run(cost, feed_dict={X:train_X, Y:train_Y}), "W=", sess.run(W), "b=", sess.run(b))

    # 图形显示
    plt.plot(train_X, train_Y, 'ro', label='Original data')
    plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
    plt.legend()
    plt.show()

    plotdata["avgloss"] = moving_average(plotdata["loss"])
    plt.figure(1)
    plt.subplot(211)
    plt.plot(plotdata["batchsize"], plotdata["avgloss"], 'b--')
    plt.xlabel('Minibatch number')
    plt.ylabel('Loss')
    plt.title('Minibatch run vs. Training loss')

    plt.show()

    print("x=0.2, z=", sess.run(z, feed_dict={X: 0.2}))

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
很高兴回答您的问题!本文将重点介绍如何使用tensorflow和sklearn实现线性回归,并比较两种方法的优缺点。 一、线性回归介绍 线性回归是一种基本的机器学习算法,用于预测一个连续的数值。它是一种监督学习算法,需要有一个训练集来训练模型。在线性回归中,我们假设目标变量与自变量之间是线性关系,因此我们尝试找到一条最佳拟合直线来描述它们之间的关系。 二、使用tensorflow实现线性回归 TensorFlow是一个由Google开发的开源机器学习框架,它具有高效、灵活和易于使用的特点,广泛应用于各个领域。下面我们将介绍如何使用TensorFlow实现线性回归。 1、导入库 ``` import tensorflow as tf import numpy as np import matplotlib.pyplot as plt ``` 2、生成数据 为了演示线性回归,我们需要生成一些数据。我们将生成一个简单的数据集,其中有100个随机数,分别作为X和Y。 ``` X = np.random.rand(100).astype(np.float32) Y = X * 0.1 + 0.3 ``` 3、定义模型 在TensorFlow中,我们需要定义一个计算图来描述我们的模型。在本例中,我们将使用一个简单的线性模型 y = wx + b,其中w和b是我们需要学习的参数。 ``` w = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) b = tf.Variable(tf.zeros([1])) y = w * X + b ``` 4、定义损失函数 我们需要定义一个损失函数来衡量模型的性能。在本例中,我们将使用均方误差作为损失函数。 ``` loss = tf.reduce_mean(tf.square(y - Y)) ``` 5、定义优化器 我们需要定义一个优化器来最小化损失函数。在本例中,我们将使用梯度下降优化器。 ``` optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) ``` 6、训练模型 我们需要训练模型来学习参数w和b。在本例中,我们将使用1000次迭代来训练模型。 ``` init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) for step in range(1000): sess.run(train) if step % 100 == 0: print(step, sess.run(w), sess.run(b)) ``` 7、可视化结果 我们可以使用matplotlib库来可视化模型的结果。 ``` plt.plot(X, Y, 'ro', label='Original data') plt.plot(X, sess.run(w) * X + sess.run(b), label='Fitted line') plt.legend() plt.show() ``` 三、使用sklearn实现线性回归 scikit-learn是一个流行的Python机器学习库,提供了许多常用的算法和工具。现在我们将介绍如何使用scikit-learn实现线性回归。 1、导入库 ``` import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression ``` 2、生成数据 我们使用与上面相同的数据集。 ``` X = np.random.rand(100, 1) Y = X * 0.1 + 0.3 ``` 3、定义模型 在scikit-learn中,我们需要实例化一个线性回归模型。 ``` model = LinearRegression() ``` 4、训练模型 我们可以使用fit()方法来训练模型。 ``` model.fit(X, Y) ``` 5、可视化结果 我们可以使用matplotlib库来可视化模型的结果。 ``` plt.plot(X, Y, 'ro', label='Original data') plt.plot(X, model.predict(X), label='Fitted line') plt.legend() plt.show() ``` 四、对比两种方法的优缺点 使用TensorFlow实现线性回归的优点: 1. TensorFlow是一个灵活的框架,可以轻松地实现各种机器学习算法。 2. TensorFlow提供了高效的计算图实现,可以利用GPU进行加速。 3. TensorFlow具有良好的可视化工具,可以帮助我们更好地理解和调试模型。 使用TensorFlow实现线性回归的缺点: 1. TensorFlow需要对TensorFlow的基本原理有一定的了解,对初学者来说可能有一定的难度。 2. TensorFlow的语法相对较为复杂,需要花费一些时间来学习和理解。 3. TensorFlow需要编写大量的代码来实现模型,相对于scikit-learn可能稍微繁琐一些。 使用scikit-learn实现线性回归的优点: 1. scikit-learn是一个简单易用的Python机器学习库,可以快速实现各种机器学习算法。 2. scikit-learn提供了大量的实用工具和函数,可以帮助我们更好地处理数据和调试模型。 3. scikit-learn的语法相对较为简单,对初学者来说比较友好。 使用scikit-learn实现线性回归的缺点: 1. scikit-learn的灵活性相对较低,不如TensorFlow那么灵活。 2. scikit-learn的计算效率可能比TensorFlow略低。 3. scikit-learn的可视化工具相对较少,不如TensorFlow那么强大。 以上就是使用TensorFlow和scikit-learn实现线性回归的方法和比较。希望对您有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值