qym秦悦明的运维笔记

新blog地址 qinyueming.cc

python 线程与进程

0. 计算100w随机数的和,分别用多进程和多线程,结果是在同样的环境下,多进程更能压榨每个cpu使用率,因为GIL的存在,所以python里面的多线程效率有瓶颈。

当然老司机知道,这种cpu密集的运算,本来就不应该用多线程来做,这是后话。
例子是抄的,对比一下很明显。

import multiprocessing
import random

def compute(n):
    return sum(
        [random.randint(1, 100) for i in range(1000000)])


pool = multiprocessing.Pool(8)
print "results: %s" % pool.map(compute, range(8))
import random
import threading

results = []

def compute():
    results.append(sum(
        [random.randint(1, 100) for i in range(1000000)]))


workers = [threading.Thread(target=compute) for x in range(8)]

for worker in workers:
    worker.start()

for worker in workers:
    worker.join()

print "results: %s" % results
阅读更多
个人分类: python
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

python 线程与进程

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭